Solving differential equations in Julia

Standard procedures

Solve ODEs using OrdinaryDiffEq.jl

Documentation: https://docs.sciml.ai/DiffEqDocs/stable/

Single variable: Exponential decay model

The concentration of a decaying nuclear isotope could be described as an exponential decay:

\[ \frac{d}{dt}C(t) = - \lambda C(t) \]

State variable - \(C(t)\): The concentration of a decaying nuclear isotope.

Parameter - \(\lambda\): The rate constant of decay. The half-life \(t_{\frac{1}{2}} = \frac{ln2}{\lambda}\)

using OrdinaryDiffEq
using Plots
Plots.default(linewidth=2)

The model function is the 3-argument out-of-place form, f(u, p, t).

decay(u, p, t) = p * u

p = -1.0            ## Rate of exponential decay
u0 = 1.0            ## Initial condition
tspan = (0.0, 2.0)  ## Start time and end time

prob = ODEProblem(decay, u0, tspan, p)
sol = solve(prob)
retcode: Success
Interpolation: 3rd order Hermite
t: 8-element Vector{Float64}:
 0.0
 0.10001999200479662
 0.34208427066999536
 0.6553980136343391
 1.0312652525315806
 1.4709405856363595
 1.9659576669700232
 2.0
u: 8-element Vector{Float64}:
 1.0
 0.9048193287657775
 0.7102883621328674
 0.5192354400036404
 0.3565557657699655
 0.22970979078638265
 0.1400224727245278
 0.13533600284008826

Solution at time t=1.0 (with interpolation)

sol(1.0)
0.3678796381978344

Time points

sol.t
8-element Vector{Float64}:
 0.0
 0.10001999200479662
 0.34208427066999536
 0.6553980136343391
 1.0312652525315806
 1.4709405856363595
 1.9659576669700232
 2.0

Solutions at corresponding time points

sol.u
8-element Vector{Float64}:
 1.0
 0.9048193287657775
 0.7102883621328674
 0.5192354400036404
 0.3565557657699655
 0.22970979078638265
 0.1400224727245278
 0.13533600284008826

Visualize the solution

plot(sol)

Three variables: The SIR model

The SIR model describes the spreading of an contagious disease can be described by the SIR model:

\[ \begin{align} \frac{d}{dt}S(t) &= - \beta S(t)I(t) \\ \frac{d}{dt}I(t) &= \beta S(t)I(t) - \gamma I(t) \\ \frac{d}{dt}R(t) &= \gamma I(t) \end{align} \]

State variables

  • \(S(t)\) : the fraction of susceptible people
  • \(I(t)\) : the fraction of infectious people
  • \(R(t)\) : the fraction of recovered (or removed) people

Parameters

  • \(\beta\) : the rate of infection when susceptible and infectious people meet
  • \(\gamma\) : the rate of recovery of infectious people
using OrdinaryDiffEq
using Plots
Plots.default(linewidth=2)

SIR model (in-place form can save array allocations and thus faster)

function sir!(du, u, p, t)
    s, i, r = u
    β, γ = p
    v1 = β * s * i
    v2 = γ * i
    du[1] = -v1
    du[2] = v1 - v2
    du[3] = v2
    return nothing
end
sir! (generic function with 1 method)
p ==1.0, γ=0.3)
u0 = [0.99, 0.01, 0.00]
tspan = (0.0, 20.0)
prob = ODEProblem(sir!, u0, tspan, p)
sol = solve(prob)
retcode: Success
Interpolation: 3rd order Hermite
t: 17-element Vector{Float64}:
  0.0
  0.08921318693905476
  0.3702862715172094
  0.7984257132319627
  1.3237271485666187
  1.991841832691831
  2.7923706947355837
  3.754781614278828
  4.901904318934307
  6.260476636498209
  7.7648912410433075
  9.39040980993922
 11.483861023017885
 13.372369854616487
 15.961357172044833
 18.681426667664056
 20.0
u: 17-element Vector{Vector{Float64}}:
 [0.99, 0.01, 0.0]
 [0.9890894703413342, 0.010634484617786016, 0.00027604504087978485]
 [0.9858331594901347, 0.012901496825852227, 0.0012653436840130792]
 [0.9795270529591532, 0.017282420996456258, 0.003190526044390598]
 [0.9689082167415561, 0.024631267034445452, 0.006460516223998509]
 [0.9490552312363142, 0.03827338797605376, 0.012671380787632129]
 [0.911862947533394, 0.06347250098224955, 0.024664551484356523]
 [0.8398871089274514, 0.11078176031568526, 0.04933113075686341]
 [0.707584206802473, 0.19166147882272797, 0.10075431437479916]
 [0.5081460287219878, 0.2917741934147055, 0.2000797778633069]
 [0.31213222024414106, 0.3415879120018043, 0.34627986775405484]
 [0.1821568309636563, 0.309998313415639, 0.5078448556207048]
 [0.10427205468919257, 0.2206111401113331, 0.6751168051994745]
 [0.07386737407725885, 0.14760143051851196, 0.7785311954042293]
 [0.05545028910907742, 0.07997076922865369, 0.864578941662269]
 [0.04733499069589219, 0.040605653213833574, 0.9120593560902743]
 [0.04522885458929347, 0.02905741611081477, 0.9257137292998918]

Visualize the solution

plot(sol, label=["S" "I" "R"], legend=:right)

Saving simulation results

using DataFrames
using CSV

df = DataFrame(sol)
CSV.write("lorenz.csv", df)
rm("lorenz.csv")

Catalyst.jl

Catalyst.jl is a domain-specific language (DSL) package to simulate chemical reaction networks.

using OrdinaryDiffEq
using Catalyst
using Plots
Plots.default(linewidth=2)

Exponential decay model

decay_rn = @reaction_network begin
    λ, C --> 0
end

\[ \begin{align*} \mathrm{C} &\xrightarrow{\lambda} \varnothing \end{align*} \]

p = [:λ => 1.0]
u0 = [:C => 1.0]
tspan = (0.0, 2.0)

prob = ODEProblem(decay_rn, u0, tspan, p)
sol = solve(prob)
retcode: Success
Interpolation: 3rd order Hermite
t: 8-element Vector{Float64}:
 0.0
 0.10001999200479662
 0.34208427066999536
 0.6553980136343391
 1.0312652525315806
 1.4709405856363595
 1.9659576669700232
 2.0
u: 8-element Vector{Vector{Float64}}:
 [1.0]
 [0.9048193287657775]
 [0.7102883621328674]
 [0.5192354400036404]
 [0.3565557657699655]
 [0.22970979078638265]
 [0.1400224727245278]
 [0.13533600284008826]
plot(sol, title="Exponential Decay")

SIR model

sir_rn = @reaction_network begin
    β, S + I --> 2I
    γ, I --> R
end

\[ \begin{align*} \mathrm{S} + \mathrm{I} &\xrightarrow{\beta} 2 \mathrm{I} \\ \mathrm{I} &\xrightarrow{\gamma} \mathrm{R} \end{align*} \]

Extract the symbols for later use

@unpack β, γ, S, I, R = sir_rn

p ==> 1.0, γ => 0.3]
u0 = [S => 0.99, I => 0.01, R => 0.00]
tspan = (0.0, 20.0)

prob = ODEProblem(sir_rn, u0, tspan, p)
sol = solve(prob)
retcode: Success
Interpolation: 3rd order Hermite
t: 17-element Vector{Float64}:
  0.0
  0.08921318693905476
  0.3702862715172094
  0.7984257132319627
  1.3237271485666187
  1.991841832691831
  2.7923706947355837
  3.754781614278828
  4.901904318934307
  6.260476636498209
  7.7648912410433075
  9.39040980993922
 11.483861023017885
 13.372369854616487
 15.961357172044833
 18.681426667664056
 20.0
u: 17-element Vector{Vector{Float64}}:
 [0.99, 0.01, 0.0]
 [0.9890894703413342, 0.010634484617786016, 0.00027604504087978485]
 [0.9858331594901347, 0.012901496825852227, 0.0012653436840130792]
 [0.9795270529591532, 0.017282420996456258, 0.003190526044390598]
 [0.9689082167415561, 0.024631267034445452, 0.006460516223998509]
 [0.9490552312363142, 0.03827338797605376, 0.012671380787632129]
 [0.911862947533394, 0.06347250098224955, 0.024664551484356523]
 [0.8398871089274514, 0.11078176031568526, 0.04933113075686341]
 [0.707584206802473, 0.19166147882272797, 0.10075431437479916]
 [0.5081460287219878, 0.2917741934147055, 0.2000797778633069]
 [0.31213222024414106, 0.3415879120018043, 0.34627986775405484]
 [0.1821568309636563, 0.309998313415639, 0.5078448556207048]
 [0.10427205468919257, 0.2206111401113331, 0.6751168051994745]
 [0.07386737407725885, 0.14760143051851196, 0.7785311954042293]
 [0.05545028910907742, 0.07997076922865369, 0.864578941662269]
 [0.04733499069589219, 0.040605653213833574, 0.9120593560902743]
 [0.04522885458929347, 0.02905741611081477, 0.9257137292998918]
plot(sol, legend=:right, title="SIR Model")


This notebook was generated using Literate.jl.

Back to top