Fig 4.15, 4.16, 4.17#
Oscillatory networks.
Figure 4.15 (A)#
using OrdinaryDiffEq
using ModelingToolkit
using Plots
Plots.default(linewidth=2)
The model
@independent_variables t
@variables A(t) B(t)
@parameters k0 k1 k2 n
D = Differential(t)
eqs = [
D(A) ~ k0 - k1 * A * (1 + B^n),
D(B) ~ k1 * A * (1 + B^n) - k2 * B
]
@mtkbuild osys = ODESystem(eqs, t)
\[\begin{split} \begin{align}
\frac{\mathrm{d} A\left( t \right)}{\mathrm{d}t} &= \mathtt{k0} + \mathtt{k1} \left( -1 - \left( B\left( t \right) \right)^{n} \right) A\left( t \right) \\
\frac{\mathrm{d} B\left( t \right)}{\mathrm{d}t} &= - \mathtt{k2} B\left( t \right) + \mathtt{k1} \left( 1 + \left( B\left( t \right) \right)^{n} \right) A\left( t \right)
\end{align}
\end{split}\]
tend = 8.0
ps1 = Dict(k0 => 8, k1 => 1, k2 => 5, n => 2)
prob = ODEProblem(osys, [A => 1.5, B => 1.0], tend, ps1)
u0s = [
[1.5, 1.0],
[0.0, 1.0],
[0.0, 3.0],
[2.0, 0.0],
]
sols = map(u0s) do u0
solve(remake(prob, u0=u0))
end
plot(sols[1], xlabel="Time", ylabel="Concentration", title ="Fig 4.15 (A)", xlims=(0, 8))
Fig 4.15 (B)#
∂F415 = function (x, y; scale=20)
da, db = prob.f([x, y], prob.p, nothing)
s = sqrt(hypot(da, db)) * scale
return (da / s, db / s)
end
∂A415 = (x, y) -> prob.f([x, y], prob.p, nothing)[1]
∂B415 = (x, y) -> prob.f([x, y], prob.p, nothing)[2]
#8 (generic function with 1 method)
Grid points
r = range(0, 4, 21)
xx = [x for y in r, x in r]
yy = [y for y in r, x in r];
fig = plot(title="Fig 4.15 B")
quiver!(fig, xx, yy, quiver=∂F415, line=(:lightgrey), arrow=(:closed), aspect_ratio=:equal)
contour!(fig, 0:0.01:4, 0:0.01:4, ∂A415, levels=[0], cbar=false, line=(:black))
plot!(fig, Float64[], Float64[], line=(:black), label="A nullcline")
contour!(fig, 0:0.01:4, 0:0.01:4, ∂B415, levels=[0], cbar=false, line=(:black, :dash))
plot!(fig, Float64[], Float64[], line=(:black, :dash), label="B nullcline")
for sol in sols
plot!(fig, sol, idxs=(A, B), label=nothing)
end
plot!(fig, xlim=(0, 4), ylim=(0, 4), legend=:topright, size=(600, 600), xlabel="[A]", ylabel="[B]")
Fig 4.16 A#
Oscillatory parameter set
ps2 = Dict(k0 => 8, k1 => 1, k2 => 5, n => 2.5)
tend = 100.0
u0s = [
[1.5, 1.0],
[0.0, 1.0],
[0.0, 3.0],
[2.0, 0.0],
]
prob416 = remake(prob, p=ps2)
sols = map(u0s) do u0
solve(remake(prob416, u0=u0))
end
plot(sols[1], xlabel="Time", ylabel="Concentration", title ="Fig 4.16(A)", xlims=(0, 8))
Fig 4.16 b#
∂F416 = function (x, y; scale=20)
da, db = prob416.f([x, y], prob416.p, nothing)
s = sqrt(hypot(da, db)) * scale
return (da / s, db / s)
end
∂A416 = (x, y) -> prob416.f([x, y], prob416.p, nothing)[1]
∂B416 = (x, y) -> prob416.f([x, y], prob416.p, nothing)[2]
#21 (generic function with 1 method)
r = range(0, 4, 21)
xx = [x for y in r, x in r]
yy = [y for y in r, x in r];
fig = plot(title="Fig 4.16 B")
quiver!(fig, xx, yy, quiver=∂F416, line=(:lightgrey), arrow=(:closed), aspect_ratio=:equal)
contour!(fig, 0:0.01:4, 0:0.01:4, ∂A416, levels=[0], cbar=false, line=(:black))
plot!(fig, Float64[], Float64[], line=(:black), label="A nullcline")
contour!(fig, 0:0.01:4, 0:0.01:4, ∂B416, levels=[0], cbar=false, line=(:black, :dash))
plot!(fig, Float64[], Float64[], line=(:black, :dash), label="B nullcline")
for sol in sols
plot!(fig, sol, idxs=(A, B), label=nothing)
end
plot!(fig, xlim=(0, 4), ylim=(0, 4), legend=:topright, size=(600, 600), xlabel="[A]", ylabel="[B]")
Fig 4.17#
prob417 = remake(prob, p=ps2, u0=[2.0, 1.5], tspan=10.0)
sol = solve(prob417)
fig = plot(title="Fig 4.17")
plot!(fig, sol, idxs=(A, B), label=nothing, arrow=:closed)
quiver!(fig, xx, yy, quiver=∂F416, line=(:lightgrey), arrow=(:closed), aspect_ratio=:equal)
contour!(fig, 1:0.01:3, 1:0.01:3, ∂A416, levels=[0], cbar=false, line=(:black))
plot!(fig, identity, 0, 0, line=(:black), label="A nullcline")
contour!(fig, 1:0.01:3, 1:0.01:3, ∂B416, levels=[0], cbar=false, line=(:black, :dash))
plot!(fig, identity, 0, 0, line=(:black, :dash), label="B nullcline")
plot!(fig, xlims=(1, 3), ylims=(1, 3), legend=:topright, size=(600, 600), xlabel="[A]", ylabel="[B]")
This notebook was generated using Literate.jl.