Fig 7.11

Fig 7.11#

Model of phage lambda decision switch

using OrdinaryDiffEq
using ModelingToolkit
using Plots
Plots.default(linewidth=2)

Model

function build_model_711(;name)
    @independent_variables t
    D = Differential(t)
    @variables r(t) = 0.0 c(t) = 0.0
    @parameters begin
        K1=1
        K2=0.1
        K3=5
        K4=0.5
        delta_r=0.02
        delta_c=0.02
        a=5
        b=50
    end
    rd = r / 2
    cd = c / 2
    f1 = K1 * rd^2
    f2 = K2 * rd
    f3 = K3 * cd
    f4 = K4 * cd
    den = 1 + f1 * (1 + f2) + f3 * (1 + f4)
    eqs = [
        D(r) ~ a * (1 + 10 * f1) / den - delta_r * r,
        D(c) ~ b * (1 + f3) / den - delta_c * c
    ]
    return ODESystem(eqs, t; name)
end

@mtkbuild sys = build_model_711()
\[\begin{split} \begin{align} \frac{\mathrm{d} r\left( t \right)}{\mathrm{d}t} &= \frac{\left( 1 + \frac{5}{2} \left( r\left( t \right) \right)^{2} \mathtt{K1} \right) a}{1 + \frac{1}{2} \mathtt{K3} \left( 1 + \frac{1}{2} \mathtt{K4} c\left( t \right) \right) c\left( t \right) + \frac{1}{4} \left( r\left( t \right) \right)^{2} \mathtt{K1} \left( 1 + \frac{1}{2} \mathtt{K2} r\left( t \right) \right)} - \mathtt{delta\_r} r\left( t \right) \\ \frac{\mathrm{d} c\left( t \right)}{\mathrm{d}t} &= \frac{\left( 1 + \frac{1}{2} \mathtt{K3} c\left( t \right) \right) b}{1 + \frac{1}{2} \mathtt{K3} \left( 1 + \frac{1}{2} \mathtt{K4} c\left( t \right) \right) c\left( t \right) + \frac{1}{4} \left( r\left( t \right) \right)^{2} \mathtt{K1} \left( 1 + \frac{1}{2} \mathtt{K2} r\left( t \right) \right)} - \mathtt{delta\_c} c\left( t \right) \end{align} \end{split}\]

Fig 7.11 (A)#

tend = 6000.0
prob = ODEProblem(sys, [], tend)

∂R = (x, y) -> prob.f([x, y], prob.p, nothing)[1]
∂C = (x, y) -> prob.f([x, y], prob.p, nothing)[2]

∂F = function (x, y; scale=0.2)
    dR, dC = prob.f([x, y], prob.p, nothing)
    s = sqrt(hypot(dR, dC)) * scale
    return (dR / s, dC / s)
end

rx = range(0, 250, 201)
ry = range(0, 250, 201)
rxy = range(0, 250, 21)
xx = [x for y in rxy, x in rxy]
yy = [y for y in rxy, x in rxy]

fig = plot(title="Figure 7.11 (A)")
contour!(fig, rx, ry, ∂R, levels=[0], cbar=false, line=(:black))
plot!(fig, Float64[], Float64[], line=(:black), label="R nullcline")
contour!(fig, rx, ry, ∂C, levels=[0], cbar=false, line=(:black, :dash))
plot!(fig, Float64[], Float64[], line=(:black, :dash), label="C nullcline")
quiver!(fig, xx, yy, quiver=∂F, line=(:lightblue), arrow=(:closed))

plot!(fig, xlims=(0, 250), ylims=(0, 250), xlabel="[cI] (nM)", ylabel="[cro] (nM)", aspect_ratio=:equal, legend=:top, size=(600, 600))
../_images/ce53cb164b15cd7d2903f1094097470f8af3c75d234d37cc6013b65d25e4e453.png

Fig 7.11 (B)#

prob2 = remake(prob, p = [sys.delta_r => 0.2])

rx = range(0, 250, 201)
ry = range(0, 250, 201)
rxy = range(0, 250, 21)
xx = [x for y in rxy, x in rxy]
yy = [y for y in rxy, x in rxy]

∂R2 = (x, y) -> prob2.f([x, y], prob2.p, nothing)[1]
∂C2 = (x, y) -> prob2.f([x, y], prob2.p, nothing)[2]

∂F2 = function (x, y; scale=0.2)
    dR, dC = prob2.f([x, y], prob2.p, nothing)
    s = sqrt(hypot(dR, dC)) * scale
    return (dR / s, dC / s)
end

fig = plot(title="Figure 7.11 (B)")
contour!(fig, rx, ry, ∂R2, levels=[0], cbar=false, line=(:black))
plot!(fig, Float64[], Float64[], line=(:black), label="R nullcline")
contour!(fig, rx, ry, ∂C2, levels=[0], cbar=false, line=(:black, :dash))
plot!(fig, Float64[], Float64[], line=(:black, :dash), label="C nullcline")
quiver!(fig, xx, yy, quiver=∂F2, line=(:lightblue), arrow=(:closed))

plot!(fig, xlims=(0, 250), ylims=(0, 250), xlabel="[cI] (nM)", ylabel="[cro] (nM)", aspect_ratio=:equal, legend=:top, size=(600, 600))
../_images/f9774cd77267d703094d23dbd3c0437451675e31ed4aa8796891c8907bece434.png

This notebook was generated using Literate.jl.