Fig 2.11, 2.12, 2.13, 2.14#

Model reduction of ODE metabolic networks.

using OrdinaryDiffEq
using Catalyst
using ModelingToolkit
using Plots
Plots.default(linewidth=2)
rn211 = @reaction_network begin
    k0, 0 --> A
    (k1, km1), A <--> B
    k2, B --> 0
end
\[\begin{split} \begin{align*} \varnothing &\xrightarrow{\mathtt{k0}} \mathrm{A} \\ \mathrm{A} &\xrightleftharpoons[\mathtt{km1}]{\mathtt{k1}} \mathrm{B} \\ \mathrm{B} &\xrightarrow{\mathtt{k2}} \varnothing \end{align*} \end{split}\]
@unpack k0, k1, km1, k2, A, B = rn211
ps1 = [k0 => 0.0, k1 => 9.0, km1 => 12.0, k2 => 2.0]
u0 = [A => 0.0, B => 10.0]
tend = 3.0
sol211 = solve(ODEProblem(rn211, u0, tend, ps1))
retcode: Success
Interpolation: 3rd order Hermite
t: 34-element Vector{Float64}:
 0.0
 8.33250002662905e-6
 9.165750029291953e-5
 0.0009249075029558242
 0.0049255520098868185
 0.012950994848397006
 0.0242033909176605
 0.0386770307390286
 0.056874831424329884
 0.0788503957456076
 ⋮
 1.7517916357544254
 1.8976419863766623
 2.04653471747305
 2.199447644522893
 2.3553401128119527
 2.512411490644732
 2.6691958789164265
 2.8250502965479143
 3.0
u: 34-element Vector{Vector{Float64}}:
 [0.0, 10.0]
 [0.0009998041949395534, 9.99883355552422]
 [0.010987314386434823, 9.987180710981443]
 [0.10981641889273347, 9.871804396920822]
 [0.5587746014145984, 9.345993049721082]
 [1.3433471992221453, 8.419063000156342]
 [2.2233611282304877, 7.3619537804801425]
 [3.0603231048671335, 6.327621136104827]
 [3.7711572231276933, 5.4043546428642255]
 [4.28969045038158, 4.6657291789666395]
 ⋮
 [1.3548533333683448, 0.9254354475123455]
 [1.20381035716471, 0.8220175368337398]
 [1.0669057534967221, 0.7284268312399685]
 [0.9424542249340025, 0.6434317390046457]
 [0.8304907306491665, 0.5670029920694394]
 [0.7311216458221741, 0.49918307682576185]
 [0.6437926931467899, 0.43957679348537654]
 [0.5673269320456577, 0.3873753245348438]
 [0.4923357035532439, 0.3359380894875631]

Fig 2.11

plot(
    sol211,
    xlabel="Time (AU)",
    ylabel="Concentration (AU)",
    title="Fig. 2.11 (Full model)"
)
../_images/e00bde66caf2ecfc2704e857a080ca5929f763121c9063dcdb3930792bd55391.png

Figure 2.12 : Rapid equilibrium assumption#

function make_212(; name)
    @parameters k0 k1 km1 k2
    @independent_variables t
    @variables A(t) B(t) C(t)
    D = Differential(t)
    eqs = [
        C ~ A + B
        B ~ C * k1 / (km1 + k1)
        D(C) ~ k0 - k2 * B
    ]
    return ODESystem(eqs, t; name)
end
make_212 (generic function with 1 method)
@mtkbuild model212 = make_212()
\[ \begin{align} \frac{\mathrm{d} C\left( t \right)}{\mathrm{d}t} &= \mathtt{k0} - \mathtt{k2} B\left( t \right) \end{align} \]
unknowns(model212)
1-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
 C(t)
observed(model212)
\[\begin{split} \begin{align} B\left( t \right) &= \frac{\mathtt{k1} C\left( t \right)}{\mathtt{k1} + \mathtt{km1}} \\ A\left( t \right) &= - B\left( t \right) + C\left( t \right) \end{align} \end{split}\]
parameters(model212)
4-element Vector{Any}:
 k0
 k2
 km1
 k1
independent_variables(model212)
1-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
 t
@unpack k0, k1, km1, k2, C, A, B = model212
ps1 = [k0 => 0.0, k1 => 9.0, km1 => 12.0, k2 => 2.0]
u0 = [C => 10.0]
tend = 3.0
prob = ODEProblem(model212, u0, tend, ps1)
sol212 = solve(prob)
retcode: Success
Interpolation: 3rd order Hermite
t: 9-element Vector{Float64}:
 0.0
 0.10313309318586757
 0.3753972361702897
 0.7370512456211995
 1.167737125797318
 1.6758020636903974
 2.2474174188288836
 2.8795734914073643
 3.0
u: 9-element Vector{Vector{Float64}}:
 [10.0]
 [9.153948340781719]
 [7.24865584846079]
 [5.3165629074890655]
 [3.6754225790588735]
 [2.377822615503587]
 [1.4567854018333606]
 [0.8473770113337572]
 [0.7642714199479234]
fig = plot(sol211, line=(:dash, 1), label=["A (full solution)" "B (full solution)"])
plot!(fig, sol212, idxs=[A, B], label=["A (rapid equilibrium)" "B (rapid equilibrium)"])
plot!(fig,
    title="Fig. 2.12 (Rapid equilibrium model)",
    xlabel="Time (AU)",
    ylabel="Concentration (AU)"
)

fig
../_images/f33d12014bbd9b9678d8d801970746087198edeec3c50879155a245783a576e4.png

Figure 2.13: Rapid equilibrium (take 2)#

When another set of parameters is not suitable for rapid equilibrium assumption.

ps2 = [k0 => 9.0, k1 => 20.0, km1 => 12.0, k2 => 2.0]
u0 = [A => 8.0, B => 4.0]
tend = 3.0

sol213full = solve(ODEProblem(rn211, u0, tend, ps2))
sol213re = solve(ODEProblem(model212, [C => sum(last.(u0))], tend, ps2))

fig = plot(sol213full, line=(:dash, 1), label=["A (full solution)" "B (full solution)"])
plot!(fig, sol213re, idxs=[A, B], label=["A (rapid equilibrium)" "B (rapid equilibrium)"])
plot!(fig,
    title="Fig. 2.13 (Rapid equilibrium model)",
    xlabel="Time (AU)",
    ylabel="Concentration (AU)"
)

fig
../_images/b16429d48baae669bd1e8b06195dc83468bbb0cb0704f2df20ddd96673c63f73.png

Figure 2.14 : QSSA#

Quasi-steady state assumption on species A

function make_214(; name)
    @parameters k0 k1 km1 k2
    @independent_variables t
    @variables A(t) B(t)
    D = Differential(t)
    eqs = [
        A ~ (k0 + km1 * B) / k1
        D(B) ~ k1 * A - (km1 + k2) * B
    ]
    return ODESystem(eqs, t; name)
end
make_214 (generic function with 1 method)
@mtkbuild model214 = make_214()
\[ \begin{align} \frac{\mathrm{d} B\left( t \right)}{\mathrm{d}t} &= \mathtt{k1} A\left( t \right) - \left( \mathtt{k2} + \mathtt{km1} \right) B\left( t \right) \end{align} \]

Initial conditions can also be represented in symbols

sol214 = solve(ODEProblem(model214, [B => (k1 * sum(last.(u0)) - k0) / (k1 + km1)], tend, ps2))

fig = plot(sol213full, line=(:dash))
plot!(fig, sol214, idxs=[A, B], label=["A (QSSA)" "B (QSSA)"])
plot!(fig,
    xlabel="Time (AU)",
    ylabel="Concentration (AU)",
    title="Figure 2.14: Ref vs QSSA",
    xlims=(0.0, tend)
)
../_images/e9edd4842b25e1b92e49befb70d733d8b5cd8e35769a621a2d7d3d0bce3af085.png

This notebook was generated using Literate.jl.