Fig 2.11, 2.12, 2.13, 2.14#
Model reduction of ODE metabolic networks.
using OrdinaryDiffEq
using Catalyst
using ModelingToolkit
using Plots
Plots.default(linewidth=2)
rn211 = @reaction_network begin
k0, 0 --> A
(k1, km1), A <--> B
k2, B --> 0
end
\[\begin{split} \begin{align*}
\varnothing &\xrightarrow{\mathtt{k0}} \mathrm{A} \\
\mathrm{A} &\xrightleftharpoons[\mathtt{km1}]{\mathtt{k1}} \mathrm{B} \\
\mathrm{B} &\xrightarrow{\mathtt{k2}} \varnothing
\end{align*}
\end{split}\]
@unpack k0, k1, km1, k2, A, B = rn211
ps1 = [k0 => 0.0, k1 => 9.0, km1 => 12.0, k2 => 2.0]
u0 = [A => 0.0, B => 10.0]
tend = 3.0
sol211 = solve(ODEProblem(rn211, u0, tend, ps1))
retcode: Success
Interpolation: 3rd order Hermite
t: 34-element Vector{Float64}:
0.0
8.33250002662905e-6
9.165750029291953e-5
0.0009249075029558242
0.0049255520098868185
0.012950994848397006
0.0242033909176605
0.0386770307390286
0.056874831424329884
0.0788503957456076
⋮
1.7517916357544254
1.8976419863766623
2.04653471747305
2.199447644522893
2.3553401128119527
2.512411490644732
2.6691958789164265
2.8250502965479143
3.0
u: 34-element Vector{Vector{Float64}}:
[0.0, 10.0]
[0.0009998041949395534, 9.99883355552422]
[0.010987314386434823, 9.987180710981443]
[0.10981641889273347, 9.871804396920822]
[0.5587746014145984, 9.345993049721082]
[1.3433471992221453, 8.419063000156342]
[2.2233611282304877, 7.3619537804801425]
[3.0603231048671335, 6.327621136104827]
[3.7711572231276933, 5.4043546428642255]
[4.28969045038158, 4.6657291789666395]
⋮
[1.3548533333683448, 0.9254354475123455]
[1.20381035716471, 0.8220175368337398]
[1.0669057534967221, 0.7284268312399685]
[0.9424542249340025, 0.6434317390046457]
[0.8304907306491665, 0.5670029920694394]
[0.7311216458221741, 0.49918307682576185]
[0.6437926931467899, 0.43957679348537654]
[0.5673269320456577, 0.3873753245348438]
[0.4923357035532439, 0.3359380894875631]
Fig 2.11
plot(
sol211,
xlabel="Time (AU)",
ylabel="Concentration (AU)",
title="Fig. 2.11 (Full model)"
)
Figure 2.12 : Rapid equilibrium assumption#
function make_212(; name)
@parameters k0 k1 km1 k2
@independent_variables t
@variables A(t) B(t) C(t)
D = Differential(t)
eqs = [
C ~ A + B
B ~ C * k1 / (km1 + k1)
D(C) ~ k0 - k2 * B
]
return ODESystem(eqs, t; name)
end
make_212 (generic function with 1 method)
@mtkbuild model212 = make_212()
\[ \begin{align}
\frac{\mathrm{d} C\left( t \right)}{\mathrm{d}t} &= \mathtt{k0} - \mathtt{k2} B\left( t \right)
\end{align}
\]
unknowns(model212)
1-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
C(t)
observed(model212)
\[\begin{split} \begin{align}
B\left( t \right) &= \frac{\mathtt{k1} C\left( t \right)}{\mathtt{k1} + \mathtt{km1}} \\
A\left( t \right) &= - B\left( t \right) + C\left( t \right)
\end{align}
\end{split}\]
parameters(model212)
4-element Vector{Any}:
k0
k2
km1
k1
independent_variables(model212)
1-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
t
@unpack k0, k1, km1, k2, C, A, B = model212
ps1 = [k0 => 0.0, k1 => 9.0, km1 => 12.0, k2 => 2.0]
u0 = [C => 10.0]
tend = 3.0
prob = ODEProblem(model212, u0, tend, ps1)
sol212 = solve(prob)
retcode: Success
Interpolation: 3rd order Hermite
t: 9-element Vector{Float64}:
0.0
0.10313309318586757
0.3753972361702897
0.7370512456211995
1.167737125797318
1.6758020636903974
2.2474174188288836
2.8795734914073643
3.0
u: 9-element Vector{Vector{Float64}}:
[10.0]
[9.153948340781719]
[7.24865584846079]
[5.3165629074890655]
[3.6754225790588735]
[2.377822615503587]
[1.4567854018333606]
[0.8473770113337572]
[0.7642714199479234]
fig = plot(sol211, line=(:dash, 1), label=["A (full solution)" "B (full solution)"])
plot!(fig, sol212, idxs=[A, B], label=["A (rapid equilibrium)" "B (rapid equilibrium)"])
plot!(fig,
title="Fig. 2.12 (Rapid equilibrium model)",
xlabel="Time (AU)",
ylabel="Concentration (AU)"
)
fig
Figure 2.13: Rapid equilibrium (take 2)#
When another set of parameters is not suitable for rapid equilibrium assumption.
ps2 = [k0 => 9.0, k1 => 20.0, km1 => 12.0, k2 => 2.0]
u0 = [A => 8.0, B => 4.0]
tend = 3.0
sol213full = solve(ODEProblem(rn211, u0, tend, ps2))
sol213re = solve(ODEProblem(model212, [C => sum(last.(u0))], tend, ps2))
fig = plot(sol213full, line=(:dash, 1), label=["A (full solution)" "B (full solution)"])
plot!(fig, sol213re, idxs=[A, B], label=["A (rapid equilibrium)" "B (rapid equilibrium)"])
plot!(fig,
title="Fig. 2.13 (Rapid equilibrium model)",
xlabel="Time (AU)",
ylabel="Concentration (AU)"
)
fig
Figure 2.14 : QSSA#
Quasi-steady state assumption on species A
function make_214(; name)
@parameters k0 k1 km1 k2
@independent_variables t
@variables A(t) B(t)
D = Differential(t)
eqs = [
A ~ (k0 + km1 * B) / k1
D(B) ~ k1 * A - (km1 + k2) * B
]
return ODESystem(eqs, t; name)
end
make_214 (generic function with 1 method)
@mtkbuild model214 = make_214()
\[ \begin{align}
\frac{\mathrm{d} B\left( t \right)}{\mathrm{d}t} &= \mathtt{k1} A\left( t \right) - \left( \mathtt{k2} + \mathtt{km1} \right) B\left( t \right)
\end{align}
\]
Initial conditions can also be represented in symbols
sol214 = solve(ODEProblem(model214, [B => (k1 * sum(last.(u0)) - k0) / (k1 + km1)], tend, ps2))
fig = plot(sol213full, line=(:dash))
plot!(fig, sol214, idxs=[A, B], label=["A (QSSA)" "B (QSSA)"])
plot!(fig,
xlabel="Time (AU)",
ylabel="Concentration (AU)",
title="Figure 2.14: Ref vs QSSA",
xlims=(0.0, tend)
)
This notebook was generated using Literate.jl.