Calcium overload#

Steady-state solutions across a range of glucose levels.

using OrdinaryDiffEq
using SteadyStateDiffEq
using ModelingToolkit
using MitochondrialDynamics
using MitochondrialDynamics: μM
import PythonPlot as plt
plt.matplotlib.rcParams["font.size"] = 14
14

Default model

@named sys = make_model()
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5())
sol = solve(prob, alg)
retcode: Success
u: 9-element Vector{Float64}:
 0.057265390364254085
 0.0009825436375669918
 0.0002011417098032559
 0.09199008563917666
 0.002828010003233753
 0.008756932513658808
 0.8765023198088249
 0.24326822922077365
 0.058666961934735966

High calcium model

@unpack RestingCa, ActivatedCa = sys
prob_ca5 = SteadyStateProblem(sys, [], [RestingCa=>0.45μM, ActivatedCa=>1.25μM])
prob_ca10 = SteadyStateProblem(sys, [], [RestingCa=>0.9μM, ActivatedCa=>2.5μM])
SteadyStateProblem with uType Vector{Float64}. In-place: true
u0: 9-element Vector{Float64}:
 0.057
 0.001
 0.0002
 0.092
 0.0029
 0.0087
 0.9
 0.24
 0.06

Simulating on a range of glucose

@unpack GlcConst = sys
\[\begin{split} \begin{align} \frac{\mathrm{d} \mathtt{NADH\_m}\left( t \right)}{\mathrm{d}t} &= \frac{\mathtt{J\_DH}\left( t \right) + \mathtt{J\_NADHT}\left( t \right) - \mathtt{J\_O2}\left( t \right)}{\mathtt{V\_MTX}} - \mathtt{kNADHm} \mathtt{NADH\_m}\left( t \right) \\ \frac{\mathrm{d} \mathtt{NADH\_c}\left( t \right)}{\mathrm{d}t} &= \frac{ - \mathtt{J\_LDH}\left( t \right) - \mathtt{J\_NADHT}\left( t \right) + \mathtt{J\_GPD}\left( t \right)}{\mathtt{V\_I}} - \mathtt{kNADHc} \mathtt{NADH\_c}\left( t \right) \\ \frac{\mathrm{d} \mathtt{Ca\_m}\left( t \right)}{\mathrm{d}t} &= \frac{\mathtt{F\_M} \left( \mathtt{J\_MCU}\left( t \right) - \mathtt{J\_NCLX}\left( t \right) \right)}{\mathtt{V\_MTX}} \\ \frac{\mathrm{d} \mathtt{\Delta{\Psi}m}\left( t \right)}{\mathrm{d}t} &= \frac{ - 2 \mathtt{J\_MCU}\left( t \right) + \mathtt{J\_HR}\left( t \right) - \mathtt{J\_HL}\left( t \right) - \mathtt{J\_HF}\left( t \right) - \mathtt{J\_ANT}\left( t \right)}{\mathtt{C\_MIT}} \\ \frac{\mathrm{d} \mathtt{G3P}\left( t \right)}{\mathrm{d}t} &= \frac{ - \mathtt{J\_GPD}\left( t \right) + 2 \mathtt{J\_GK}\left( t \right)}{\mathtt{V\_I}} - \mathtt{kG3P} \mathtt{G3P}\left( t \right) \\ \frac{\mathrm{d} \mathtt{Pyr}\left( t \right)}{\mathrm{d}t} &= \frac{ - \mathtt{J\_LDH}\left( t \right) - \mathtt{J\_PDH}\left( t \right) + \mathtt{J\_GPD}\left( t \right)}{\mathtt{V\_I} + \mathtt{V\_MTX}} - \mathtt{kPyr} \mathtt{Pyr}\left( t \right) \\ \frac{\mathrm{d} \mathtt{AEC}\left( t \right)}{\mathrm{d}t} &= \frac{\frac{\mathtt{J\_ANT}\left( t \right) + 2 \mathtt{J\_GPD}\left( t \right) - \mathtt{ATPstiochGK} \mathtt{J\_GK}\left( t \right)}{\mathtt{V\_I}} + \left( - \mathtt{kATP} - \mathtt{kATPCa} \mathtt{Ca\_c}\left( t \right) \right) \mathtt{ATP\_c}\left( t \right)}{\mathtt{{\Sigma}Ac}} \\ \frac{\mathrm{d} \mathtt{x2}\left( t \right)}{\mathrm{d}t} &= - \mathtt{tipside}\left( t \right) + \mathtt{tiptip}\left( t \right) \\ \frac{\mathrm{d} \mathtt{x3}\left( t \right)}{\mathrm{d}t} &= \mathtt{tipside}\left( t \right) \end{align} \end{split}\]

Test on a range of glucose

glc = 3.5:0.5:30.0
prob_func = (prob, i, repeat) -> begin
    remake(prob, p=[GlcConst => glc[i]])
end

trajectories=length(glc)

sim = solve(EnsembleProblem(prob; prob_func, safetycopy=false), alg; trajectories)
sim_ca5 = solve(EnsembleProblem(prob_ca5; prob_func, safetycopy=false), alg; trajectories)
sim_ca10 = solve(EnsembleProblem(prob_ca10; prob_func, safetycopy=false), alg; trajectories);

Steady states for a range of glucose#

function plot_steady_state(glc, sols, sys; figsize=(10, 10), title="")

    @unpack G3P, Pyr, Ca_c, Ca_m, NADH_c, NADH_m, NAD_c, NAD_m, ATP_c, ADP_c, AMP_c, ΔΨm, x1, x2, x3, degavg = sys

    glc5 = glc ./ 5
    g3p = extract(sols, G3P * 1000)
    pyr = extract(sols, Pyr * 1000)
    ca_c = extract(sols, Ca_c * 1000)
    ca_m = extract(sols, Ca_m * 1000)
    nad_ratio_c = extract(sols, NADH_c/NAD_c)
    nad_ratio_m = extract(sols, NADH_m/NAD_m)
    atp_c = extract(sols, ATP_c * 1000)
    adp_c = extract(sols, ADP_c * 1000)
    amp_c = extract(sols, AMP_c * 1000)
    td = extract(sols, ATP_c / ADP_c)
    dpsi = extract(sols, ΔΨm * 1000)
    x1 = extract(sols, x1)
    x2 = extract(sols, x2)
    x3 = extract(sols, x3)
    deg = extract(sols, degavg)

    numrows = 3
    numcols = 3

    fig, ax = plt.subplots(numrows, numcols; figsize)

    ax[0, 0].plot(glc5, g3p)
    ax[0, 0].set(ylabel="G3P (μM)")
    ax[0, 0].set_title("a", loc="left")
    ax[0, 1].plot(glc5, pyr)
    ax[0, 1].set(ylabel="Pyruvate (μM)")
    ax[0, 1].set_title("b", loc="left")
    ax[0, 2].plot(glc5, ca_c, label="cyto")
    ax[0, 2].plot(glc5, ca_m, label="mito")
    ax[0, 2].legend()
    ax[0, 2].set(ylabel="Calcium (μM)")
    ax[0, 2].set_title("c", loc="left")
    ax[1, 0].plot(glc5, nad_ratio_c, label="cyto")
    ax[1, 0].plot(glc5, nad_ratio_m, label="mito")
    ax[1, 0].legend()
    ax[1, 0].set(ylabel="NADH:NAD (ratio)")
    ax[1, 0].set_title("d", loc="left")
    ax[1, 1].plot(glc5, atp_c, label="ATP")
    ax[1, 1].plot(glc5, adp_c, label="ADP")
    ax[1, 1].plot(glc5, amp_c, label="AMP")
    ax[1, 1].legend()
    ax[1, 1].set(ylabel="Adenylates (μM)")
    ax[1, 1].set_title("e", loc="left")
    ax[1, 2].plot(glc5, td)
    ax[1, 2].set(ylabel="ATP:ADP (ratio)")
    ax[1, 2].set_title("f", loc="left")
    ax[2, 0].plot(glc5, dpsi, label="cyto")
    ax[2, 0].set(ylabel="ΔΨ (mV)", xlabel="Glucose (X)")
    ax[2, 0].set_title("g", loc="left")
    ax[2, 1].plot(glc5, x1, label="X1")
    ax[2, 1].plot(glc5, x2, label="X2")
    ax[2, 1].plot(glc5, x3, label="X3")
    ax[2, 1].set(ylabel="Mitochondrial nodes (a.u.)", xlabel="Glucose (X)")
    ax[2, 1].set_title("h", loc="left")
    ax[2, 2].plot(glc5, deg)
    ax[2, 2].set(ylabel="Avg. Node Degree (a.u.)", xlabel="Glucose (X)")
    ax[2, 2].set_title("i", loc="left")

    for i in 0:numrows-1, j in 0:numcols-1
        ax[i, j].set_xticks(1:6)
        ax[i, j].grid()
    end
    fig.suptitle(title)
    fig.tight_layout()
    return fig
end
plot_steady_state (generic function with 1 method)

Default model

fig_glc_default = plot_steady_state(glc, sim, sys, title="Calcium 1X")
_images/64eb9447a986a17fda27ccb9f76bff1e75181f286c9b20b0fb08051f08f46724.png

High calcium (5X)

fig_ca5 = plot_steady_state(glc, sim_ca5, sys, title="Calcium 5X")
_images/e7f46227a2320a5363037a7d817e37f76139b6706c04e7cf483ca0ffd6a57885.png

High calcium (10X)

fig_ca10 = plot_steady_state(glc, sim_ca10, sys, title="Calcium 10X")
_images/5be637ab34dbde157f0f70c29e046b24f3f6b0042dc9434df9c2bfa5e7c05fd8.png

Comparing default and high calcium models#

function plot_comparision(glc, sim, sim_ca5, sim_ca10, sys;
    figsize=(8, 10), title="", labels=["Ca 1X", "Ca 5X", "Ca 10X"]
)
    @unpack G3P, Pyr, Ca_c, Ca_m, NADH_c, NADH_m, NAD_c, NAD_m, ATP_c, ADP_c, AMP_c, ΔΨm, degavg, J_O2 = sys

    glc5 = glc ./ 5

    numrows = 3
    numcols = 2
    fig, ax = plt.subplots(numrows, numcols; figsize)

    ax[0, 0].set_title("a", loc="left")
    ax[0, 0].set_ylabel("Cyto. NADH:NAD (ratio)")
    k = NADH_c/NAD_c
    yy = [extract(sim, k) extract(sim_ca5, k) extract(sim_ca10, k)]
    lines = ax[0, 0].plot(glc5, yy)
    ax[0, 0].legend(lines, labels)

    ax[0, 1].set_title("b", loc="left")
    ax[0, 1].set_ylabel("Mito. NADH:NAD (ratio)")
    k = NADH_m/NAD_m
    yy = [extract(sim, k) extract(sim_ca5, k) extract(sim_ca10, k)]
    lines = ax[0, 1].plot(glc5, yy)
    ax[0, 1].legend(lines, labels)

    ax[1, 0].set_title("c", loc="left")
    ax[1, 0].set_ylabel("ATP:ADP (ratio)")
    k = ATP_c/ADP_c
    yy = [extract(sim, k) extract(sim_ca5, k) extract(sim_ca10, k)]
    lines = ax[1, 0].plot(glc5, yy)
    ax[1, 0].legend(lines, labels)

    ax[1, 1].set_title("d", loc="left")
    ax[1, 1].set_ylabel("ΔΨm (mV)")
    k = ΔΨm * 1000
    yy = [extract(sim, k) extract(sim_ca5, k) extract(sim_ca10, k)]
    lines = ax[1, 1].plot(glc5, yy)
    ax[1, 1].legend(lines, labels)

    ax[2, 0].set_title("e", loc="left")
    ax[2, 0].set_ylabel("Avg. node degree (ratio)")
    k = degavg
    yy = [extract(sim, k) extract(sim_ca5, k) extract(sim_ca10, k)]
    lines = ax[2, 0].plot(glc5, yy)
    ax[2, 0].legend(lines, labels, loc="lower right")
    ax[2, 0].set(xlabel="Glucose (X)")

    ax[2, 1].set_title("f", loc="left")
    ax[2, 1].set_ylabel("VO2 (mM/s)")
    k = J_O2
    yy = [extract(sim, k) extract(sim_ca5, k) extract(sim_ca10, k)]
    lines = ax[2, 1].plot(glc5, yy)
    ax[2, 1].legend(lines, labels)
    ax[2, 1].set(xlabel="Glucose (X)")

    for i in 0:numrows-1, j in 0:numcols-1
        ax[i, j].set_xticks(1:6)
        ax[i, j].grid()
    end

    fig.suptitle(title)
    fig.tight_layout()
    return fig
end

figcomp = plot_comparision(glc, sim, sim_ca5, sim_ca10, sys)
_images/54c948f1597d38fe7d5066074b5e555ba01aafc9fa01f0895c94d923e05f0837.png

Export figure

exportTIF(figcomp, "S1_HighCa.tif")
Python: None

MMP vs #

function plot_dpsi_k(sim, sim_ca5, sim_ca10, sys; figsize=(6,6), title="", labels=["Ca 1X", "Ca 5X", "Ca 10X"])
    @unpack ΔΨm, degavg = sys

    fig, ax = plt.subplots(1, 1; figsize)

    ax.plot(extract(sim, ΔΨm * 1000), extract(sim, degavg), "v", label=labels[1])
    ax.plot(extract(sim_ca5, ΔΨm * 1000), extract(sim_ca5, degavg), "o", label=labels[2])
    ax.plot(extract(sim_ca10, ΔΨm * 1000), extract(sim_ca10, degavg), "x", label=labels[3])
    ax.set(xlabel="ΔΨm (mV)", ylabel="Average node degree", title=title)
    ax.legend()
    ax.grid()

    return fig
end

fig = plot_dpsi_k(sim, sim_ca5, sim_ca10, sys)
_images/5b5b5243a5b600796b2e3b61375c3a8cc7c147980cd97655ca86a1f723587fc5.png
# exportTIF(fig, "S1_HighCa_dpsi_k.tif")

x-axis as Ca2+ and y-axis as average node degree#

function plot_ca_k(sim, sim_ca5, sim_ca10, sys; figsize=(6,6), title="", labels=["Ca 1X", "Ca 5X", "Ca 10X"])
    @unpack Ca_m, degavg = sys

    fig, ax = plt.subplots(1, 1; figsize)

    ax.plot(extract(sim, Ca_m * 1000), extract(sim, degavg), "v", label=labels[1])
    ax.plot(extract(sim_ca5, Ca_m * 1000), extract(sim_ca5, degavg), "o", label=labels[2])
    ax.plot(extract(sim_ca10, Ca_m * 1000), extract(sim_ca10, degavg), "x", label=labels[3])
    ax.set(xlabel="Mitochondrial Ca (mM)", ylabel="Average node degree", title=title)
    ax.legend()
    ax.grid()
    return fig
end

fig = plot_ca_k(sim, sim_ca5, sim_ca10, sys)
_images/2f34024667cad2354ead9fa6bd2ccc2f75c691fc7fecc48c58db5356ac5a28da.png
exportTIF(fig, "S1_HighCa_ca_k.tif")
Python: None

x-axis as ATP and y-axis as average node degree#

function plot_atp_k(sim, sim_ca5, sim_ca10, sys; figsize=(6,6), title="", labels=["Ca 1X", "Ca 5X", "Ca 10X"])
    @unpack ATP_c, ADP_c, degavg = sys

    k = ATP_c / ADP_c

    fig, ax = plt.subplots(1, 1; figsize)

    ax.plot(extract(sim, k), extract(sim, degavg), "v", label=labels[1])
    ax.plot(extract(sim_ca5, k), extract(sim_ca5, degavg), "o", label=labels[2])
    ax.plot(extract(sim_ca10, k), extract(sim_ca10, degavg), "x", label=labels[3])
    ax.set(xlabel="ATP:ADP ratio", ylabel="Average node degree", title=title)
    ax.legend()
    ax.grid()

    return fig
end

fig = plot_atp_k(sim, sim_ca5, sim_ca10, sys)
_images/537964aed52d3dc9919c87d9ffca121850ecf23052564cc576873057a2fc55b1.png
exportTIF(fig, "S1_HighCa_atp_k.tif")
Python: None

This notebook was generated using Literate.jl.