Initial conditions#
using ModelingToolkit
using OrdinaryDiffEq, SteadyStateDiffEq, DiffEqCallbacks
using Plots
using CaMKIIModel
Plots.default(lw=2)
sys = build_neonatal_ecc_sys(simplify=true, reduce_iso=true, reduce_camk=true)
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5P())
sol = solve(prob, alg; abstol=1e-10, reltol=1e-10)
for (k, v) in zip(unknowns(sys), sol.u)
println(k, " => ", v, ",")
end
k_i(t) => 152559.9996465155,
na_i(t) => 12237.062977894615,
vm(t) => -67.45750776931307,
(Cai(t))[43] => 0.12242837652166248,
(Cai(t))[42] => 0.12242837730179609,
(Cai(t))[41] => 0.12242837808854574,
(Cai(t))[40] => 0.12242837888219708,
(Cai(t))[39] => 0.1224283796830473,
(Cai(t))[38] => 0.12242838049140571,
(Cai(t))[37] => 0.12242838130759442,
(Cai(t))[36] => 0.12242838213194891,
(Cai(t))[35] => 0.12242838296481885,
(Cai(t))[34] => 0.12242838380656872,
(Cai(t))[33] => 0.12242838465757873,
(Cai(t))[32] => 0.12242838551824561,
(Cai(t))[31] => 0.12242838638898353,
(Cai(t))[30] => 0.12242838727022509,
(Cai(t))[29] => 0.1224283881624223,
(Cai(t))[28] => 0.12242838906604778,
(Cai(t))[27] => 0.12242838998159579,
(Cai(t))[26] => 0.12242839090958368,
(Cai(t))[25] => 0.12242839185055313,
(Cai(t))[24] => 0.1224283928050715,
(Cai(t))[23] => 0.12242839377373371,
(Cai(t))[22] => 0.12242839475716348,
(Cai(t))[21] => 0.1224283957560155,
(Cai(t))[20] => 0.12242839677097711,
(Cai(t))[19] => 0.12242839780277047,
(Cai(t))[18] => 0.12242839885215476,
(Cai(t))[17] => 0.12242839991992874,
(Cai(t))[16] => 0.122428401006933,
(Cai(t))[15] => 0.1224284021140531,
(Cai(t))[14] => 0.12242840324222243,
(Cai(t))[13] => 0.12242840439242553,
(Cai(t))[12] => 0.12242840556570164,
(Cai(t))[11] => 0.12242840676314858,
(Cai(t))[10] => 0.12242840798592687,
(Cai(t))[9] => 0.12242840923526434,
(Cai(t))[8] => 0.12242841051246099,
(Cai(t))[7] => 0.12242841181889454,
(Cai(t))[6] => 0.12242841315602611,
(Cai(t))[5] => 0.12242841452540677,
(Cai(t))[4] => 0.12242841592868459,
(Cai(t))[3] => 0.12242841736761217,
(Cai(t))[2] => 0.1224284188440553,
(Cai(t))[44] => 0.12242837574787022,
(Cai(t))[1] => 0.12242842036000202,
CaMKOX(t) => 0.0,
CaMKAOX(t) => 0.0,
CaMKA2(t) => 0.0006225205883978374,
CaMKA(t) => 0.002490001154488599,
CaMKPOX(t) => 0.0,
CaMKP(t) => 0.001244981360220965,
CaMKBOX(t) => 0.0,
CaMKB(t) => 0.00918982822734129,
i_g(t) => 0.5604326438649049,
i_b(t) => 0.0039000847212658967,
i_fca(t) => 1.0034738183080874,
i_f(t) => 0.9997191242041247,
i_d(t) => 0.00039848918244445963,
i_Naj(t) => 0.45560479234344753,
i_Nah(t) => 0.31771015963022825,
i_Nam(t) => 0.025916959359020594,
i_y(t) => 0.14577202623532431,
i_IK(t) => 0.0005627933902149247,
i_OK(t) => 0.001768297725746092,
i_CK2(t) => 0.00195470673796493,
i_CK1(t) => 0.003025555496687018,
i_nKs(t) => 0.0023125150577087646,
i_sslow(t) => 0.9995208752568026,
i_s(t) => 0.9995208621476815,
i_r(t) => 0.0076932073813465104,
CaNSR(t) => 757.9220301155262,
CaJSR(t) => 757.7585087452603,
PO1RyR(t) => 0.0009533884074916338,
This notebook was generated using Literate.jl.