Initial conditions

Initial conditions#

using ModelingToolkit
using OrdinaryDiffEq, SteadyStateDiffEq, DiffEqCallbacks
using Plots
using CaMKIIModel
Plots.default(lw=2)

sys = build_neonatal_ecc_sys(simplify=true, reduce_iso=true, reduce_camk=true)
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5P())

sol = solve(prob, alg; abstol=1e-10, reltol=1e-10)

for (k, v) in zip(unknowns(sys), sol.u)
    println(k, " => ", v, ",")
end
k_i(t) => 152559.99921823043,
na_i(t) => 12237.063404975219,
vm(t) => -67.45750890089903,
(Cai(t))[43] => 0.12242837979267009,
(Cai(t))[42] => 0.12242838057291025,
(Cai(t))[41] => 0.12242838135976734,
(Cai(t))[40] => 0.12242838215352708,
(Cai(t))[39] => 0.12242838295448667,
(Cai(t))[38] => 0.12242838376295548,
(Cai(t))[37] => 0.12242838457925566,
(Cai(t))[36] => 0.12242838540372272,
(Cai(t))[35] => 0.12242838623670638,
(Cai(t))[34] => 0.1224283870785712,
(Cai(t))[33] => 0.12242838792969742,
(Cai(t))[32] => 0.12242838879048183,
(Cai(t))[31] => 0.12242838966133866,
(Cai(t))[30] => 0.12242839054270056,
(Cai(t))[29] => 0.12242839143501963,
(Cai(t))[28] => 0.12242839233876854,
(Cai(t))[27] => 0.12242839325444163,
(Cai(t))[26] => 0.1224283941825563,
(Cai(t))[25] => 0.12242839512365428,
(Cai(t))[24] => 0.12242839607830307,
(Cai(t))[23] => 0.12242839704709757,
(Cai(t))[22] => 0.12242839803066173,
(Cai(t))[21] => 0.1224283990296502,
(Cai(t))[20] => 0.12242840004475045,
(Cai(t))[19] => 0.12242840107668479,
(Cai(t))[18] => 0.12242840212621249,
(Cai(t))[17] => 0.1224284031941323,
(Cai(t))[16] => 0.12242840428128507,
(Cai(t))[15] => 0.1224284053885564,
(Cai(t))[14] => 0.12242840651687985,
(Cai(t))[13] => 0.12242840766724009,
(Cai(t))[12] => 0.12242840884067653,
(Cai(t))[11] => 0.12242841003828708,
(Cai(t))[10] => 0.12242841126123247,
(Cai(t))[9] => 0.12242841251074066,
(Cai(t))[8] => 0.12242841378811187,
(Cai(t))[7] => 0.12242841509472395,
(Cai(t))[6] => 0.12242841643203826,
(Cai(t))[5] => 0.12242841780160608,
(Cai(t))[4] => 0.12242841920507565,
(Cai(t))[3] => 0.12242842064419988,
(Cai(t))[2] => 0.12242842212084476,
(Cai(t))[44] => 0.12242837901877215,
(Cai(t))[1] => 0.12242842363699866,
CaMKOX(t) => 0.0,
CaMKAOX(t) => 0.0,
CaMKA2(t) => 0.0006225206300924807,
CaMKA(t) => 0.0024900013101476666,
CaMKPOX(t) => 0.0,
CaMKP(t) => 0.001244981435418822,
CaMKBOX(t) => 0.0,
CaMKB(t) => 0.009189828444969891,
i_g(t) => 0.5604326903302653,
i_b(t) => 0.0039000839081263445,
i_fca(t) => 1.003473818136178,
i_f(t) => 0.9997191242629979,
i_d(t) => 0.00039848911984084317,
i_Naj(t) => 0.4556048513446801,
i_Nah(t) => 0.3177102176736629,
i_Nam(t) => 0.025916954880080934,
i_y(t) => 0.14577204870037183,
i_IK(t) => 0.000562793255812791,
i_OK(t) => 0.001768297415683079,
i_CK2(t) => 0.001954706574004328,
i_CK1(t) => 0.0030255552430170154,
i_nKs(t) => 0.0023125146850526495,
i_sslow(t) => 0.9995208753754882,
i_s(t) => 0.999520862264583,
i_r(t) => 0.007693206790189488,
CaNSR(t) => 757.9220394018248,
CaJSR(t) => 757.7585179952144,
PO1RyR(t) => 0.0009533886126170294,

This notebook was generated using Literate.jl.