Initial conditions

Initial conditions#

using ModelingToolkit
using OrdinaryDiffEq, SteadyStateDiffEq, DiffEqCallbacks
using Plots
using CaMKIIModel
Plots.default(lw=2)

sys = build_neonatal_ecc_sys(simplify=true, reduce_iso=true, reduce_camk=true)
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5P())

sol = solve(prob, alg; abstol=1e-10, reltol=1e-10)

for (k, v) in zip(unknowns(sys), sol.u)
    println(k, " => ", v, ",")
end
(Cai(t))[10] => 0.12242841078236018,
(Cai(t))[11] => 0.1224284095594393,
(Cai(t))[12] => 0.12242840836185274,
(Cai(t))[13] => 0.12242840718843982,
(Cai(t))[14] => 0.12242840603810262,
(Cai(t))[15] => 0.12242840490980175,
(Cai(t))[16] => 0.1224284038025526,
(Cai(t))[17] => 0.12242840271542162,
(Cai(t))[18] => 0.12242840164752318,
(Cai(t))[19] => 0.12242840059801656,
(Cai(t))[1] => 0.12242842315787829,
(Cai(t))[20] => 0.12242839956610292,
(Cai(t))[21] => 0.12242839855102305,
(Cai(t))[22] => 0.12242839755205467,
(Cai(t))[23] => 0.12242839656851028,
(Cai(t))[24] => 0.12242839559973524,
(Cai(t))[25] => 0.12242839464510562,
(Cai(t))[26] => 0.12242839370402657,
(Cai(t))[27] => 0.12242839277593057,
(Cai(t))[28] => 0.12242839186027585,
(Cai(t))[29] => 0.12242839095654512,
(Cai(t))[2] => 0.12242842164175477,
(Cai(t))[30] => 0.12242839006424397,
(Cai(t))[31] => 0.12242838918289978,
(Cai(t))[32] => 0.12242838831206043,
(Cai(t))[33] => 0.12242838745129331,
(Cai(t))[34] => 0.12242838660018421,
(Cai(t))[35] => 0.12242838575833632,
(Cai(t))[36] => 0.12242838492536941,
(Cai(t))[37] => 0.12242838410091893,
(Cai(t))[38] => 0.12242838328463518,
(Cai(t))[39] => 0.12242838247618261,
(Cai(t))[3] => 0.12242842016513948,
(Cai(t))[40] => 0.12242838167523913,
(Cai(t))[41] => 0.12242838088149535,
(Cai(t))[42] => 0.12242838009465408,
(Cai(t))[43] => 0.1224283793144296,
(Cai(t))[44] => 0.12242837854054722,
(Cai(t))[4] => 0.1224284187260441,
(Cai(t))[5] => 0.12242841732260265,
(Cai(t))[6] => 0.1224284159530623,
(Cai(t))[7] => 0.12242841461577482,
(Cai(t))[8] => 0.12242841330918892,
(Cai(t))[9] => 0.1224284120318433,
CaJSR(t) => 757.7585166426683,
CaMKA(t) => 0.0024900012873871427,
CaMKA2(t) => 0.0006225206239964441,
CaMKAOX(t) => 0.0,
CaMKB(t) => 0.009189828413150707,
CaMKBOX(t) => 0.0,
CaMKOX(t) => 0.0,
CaMKP(t) => 0.0012449814244234957,
CaMKPOX(t) => 0.0,
CaNSR(t) => 757.9220380439648,
PO1RyR(t) => 0.0009533885826246968,
i_CK1(t) => 0.003025555280101067,
i_CK2(t) => 0.0019547065979737396,
i_IK(t) => 0.0005627932754609802,
i_Nah(t) => 0.31771020918828596,
i_Naj(t) => 0.4556048427192855,
i_Nam(t) => 0.025916955534857712,
i_OK(t) => 0.0017682974610109964,
i_b(t) => 0.003900084026999319,
i_d(t) => 0.0003984891289928739,
i_f(t) => 0.9997191242543914,
i_fca(t) => 1.003473818161312,
i_g(t) => 0.5604326835374889,
i_nKs(t) => 0.00231251473953114,
i_r(t) => 0.0076932068766108145,
i_s(t) => 0.9995208622474934,
i_sslow(t) => 0.999520875358138,
i_y(t) => 0.14577204541624975,
k_i(t) => 152559.99928084222,
na_i(t) => 12237.063342539344,
vm(t) => -67.45750873547232,

This notebook was generated using Literate.jl.