Initial conditions#
using ModelingToolkit
using OrdinaryDiffEq, SteadyStateDiffEq, DiffEqCallbacks
using Plots
using CaMKIIModel
Plots.default(lw=2)
sys = build_neonatal_ecc_sys(simplify=true, reduce_iso=true, reduce_camk=true)
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5P())
sol = solve(prob, alg; abstol=1e-10, reltol=1e-10)
for (k, v) in zip(unknowns(sys), sol.u)
println(k, " => ", v, ",")
end
PO1RyR(t) => 0.0009533889680205972,
CaJSR(t) => 757.7585340217498,
CaNSR(t) => 757.9220554913313,
i_r(t) => 0.007693205765960738,
i_s(t) => 0.9995208624671241,
i_sslow(t) => 0.999520875581121,
i_nKs(t) => 0.00231251403939607,
i_CK1(t) => 0.003025554803512623,
i_CK2(t) => 0.0019547062899289967,
i_OK(t) => 0.0017682968784743542,
i_IK(t) => 0.000562793022950344,
i_y(t) => 0.14577208762292285,
i_Nam(t) => 0.025916947119946084,
i_Nah(t) => 0.31771031823876555,
i_Naj(t) => 0.4556049535692231,
i_d(t) => 0.00039848901137487915,
i_f(t) => 0.999719124365001,
i_fca(t) => 1.0034738178383236,
i_b(t) => 0.0039000824992946495,
i_g(t) => 0.5604327708353704,
CaMKB(t) => 0.009189828822039777,
CaMKBOX(t) => 0.0,
CaMKP(t) => 0.0012449815657082717,
CaMKPOX(t) => 0.0,
CaMKA(t) => 0.002490001579842841,
CaMKA2(t) => 0.0006225207023324731,
CaMKAOX(t) => 0.0,
CaMKOX(t) => 0.0,
(Cai(t))[1] => 0.12242842931480229,
(Cai(t))[44] => 0.12242838468601236,
(Cai(t))[2] => 0.12242842779828955,
(Cai(t))[3] => 0.12242842632129518,
(Cai(t))[4] => 0.12242842488183034,
(Cai(t))[5] => 0.12242842347802861,
(Cai(t))[6] => 0.12242842210813666,
(Cai(t))[7] => 0.12242842077050584,
(Cai(t))[8] => 0.12242841946358451,
(Cai(t))[9] => 0.12242841818591096,
(Cai(t))[10] => 0.12242841693610701,
(Cai(t))[11] => 0.12242841571287214,
(Cai(t))[12] => 0.12242841451497807,
(Cai(t))[13] => 0.12242841334126384,
(Cai(t))[14] => 0.12242841219063126,
(Cai(t))[15] => 0.12242841106204068,
(Cai(t))[16] => 0.12242840995450717,
(Cai(t))[17] => 0.12242840886709702,
(Cai(t))[18] => 0.12242840779892437,
(Cai(t))[19] => 0.12242840674914819,
(Cai(t))[20] => 0.12242840571696954,
(Cai(t))[21] => 0.12242840470162895,
(Cai(t))[22] => 0.12242840370240396,
(Cai(t))[23] => 0.12242840271860697,
(Cai(t))[24] => 0.12242840174958307,
(Cai(t))[25] => 0.12242840079470824,
(Cai(t))[26] => 0.12242839985338742,
(Cai(t))[27] => 0.12242839892505301,
(Cai(t))[28] => 0.12242839800916311,
(Cai(t))[29] => 0.1224283971052002,
(Cai(t))[30] => 0.12242839621266983,
(Cai(t))[31] => 0.12242839533109921,
(Cai(t))[32] => 0.12242839446003616,
(Cai(t))[33] => 0.12242839359904789,
(Cai(t))[34] => 0.12242839274772013,
(Cai(t))[35] => 0.12242839190565595,
(Cai(t))[36] => 0.12242839107247504,
(Cai(t))[37] => 0.12242839024781273,
(Cai(t))[38] => 0.12242838943131926,
(Cai(t))[39] => 0.12242838862265898,
(Cai(t))[40] => 0.1224283878215097,
(Cai(t))[41] => 0.12242838702756198,
(Cai(t))[42] => 0.12242838624051852,
(Cai(t))[43] => 0.12242838546009356,
vm(t) => -67.45751086146608,
na_i(t) => 12237.064144930597,
k_i(t) => 152559.99847618767,
This notebook was generated using Literate.jl.