Initial conditions

using ModelingToolkit
using OrdinaryDiffEq, SteadyStateDiffEq, DiffEqCallbacks
using Plots
using CaMKIIModel
Plots.default(lw=2)
[ Info: Precompiling GRIJuliaExt [84369c5d-ffb2-5a92-8288-3470980d96d0] 



SYSTEM: caught exception of type :MethodError while trying to print a failed Task notice; giving up

[ Info: Precompiling IJuliaExt [2f4121a4-3b3a-5ce6-9c5e-1f2673ce168a] 



SYSTEM: caught exception of type :MethodError while trying to print a failed Task notice; giving up
sys = build_neonatal_ecc_sys(simplify=true, reduce_iso=true, reduce_camk=true)
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5P())
DynamicSS{Rodas5P{0, ADTypes.AutoForwardDiff{nothing, Nothing}, Nothing, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}, Float64}(Rodas5P{0, ADTypes.AutoForwardDiff{nothing, Nothing}, Nothing, typeof(OrdinaryDiffEqCore.DEFAULT_PRECS), Val{:forward}(), true, nothing, typeof(OrdinaryDiffEqCore.trivial_limiter!), typeof(OrdinaryDiffEqCore.trivial_limiter!)}(nothing, OrdinaryDiffEqCore.DEFAULT_PRECS, OrdinaryDiffEqCore.trivial_limiter!, OrdinaryDiffEqCore.trivial_limiter!, ADTypes.AutoForwardDiff()), Inf)
sol = solve(prob, alg; abstol=1e-10, reltol=1e-10)

for (k, v) in zip(unknowns(sys), sol.u)
    println(k, " => ", v, ",")
end
k_i(t) => 152560.00015366968,
na_i(t) => 12237.062472165031,
vm(t) => -67.45750642934479,
(Cai(t))[43] => 0.12242837264819839,
(Cai(t))[42] => 0.1224283734282057,
(Cai(t))[41] => 0.12242837421482798,
(Cai(t))[40] => 0.12242837500835083,
(Cai(t))[39] => 0.12242837580907141,
(Cai(t))[38] => 0.12242837661729893,
(Cai(t))[37] => 0.12242837743335548,
(Cai(t))[36] => 0.12242837825757649,
(Cai(t))[35] => 0.12242837909031155,
(Cai(t))[34] => 0.12242837993192512,
(Cai(t))[33] => 0.12242838078279733,
(Cai(t))[32] => 0.12242838164332485,
(Cai(t))[31] => 0.12242838251392181,
(Cai(t))[30] => 0.12242838339502068,
(Cai(t))[29] => 0.12242838428707348,
(Cai(t))[28] => 0.12242838519055267,
(Cai(t))[27] => 0.12242838610595248,
(Cai(t))[26] => 0.12242838703379018,
(Cai(t))[25] => 0.12242838797460728,
(Cai(t))[24] => 0.12242838892897118,
(Cai(t))[23] => 0.12242838989747658,
(Cai(t))[22] => 0.12242839088074718,
(Cai(t))[21] => 0.12242839187943755,
(Cai(t))[20] => 0.12242839289423489,
(Cai(t))[19] => 0.12242839392586129,
(Cai(t))[18] => 0.12242839497507584,
(Cai(t))[17] => 0.12242839604267702,
(Cai(t))[16] => 0.12242839712950541,
(Cai(t))[15] => 0.12242839823644636,
(Cai(t))[14] => 0.12242839936443314,
(Cai(t))[13] => 0.12242840051445016,
(Cai(t))[12] => 0.12242840168753648,
(Cai(t))[11] => 0.12242840288478969,
(Cai(t))[10] => 0.12242840410737015,
(Cai(t))[9] => 0.1224284053565055,
(Cai(t))[8] => 0.12242840663349555,
(Cai(t))[7] => 0.12242840793971774,
(Cai(t))[6] => 0.12242840927663297,
(Cai(t))[5] => 0.12242841064579207,
(Cai(t))[4] => 0.12242841204884285,
(Cai(t))[3] => 0.12242841348753764,
(Cai(t))[2] => 0.12242841496374189,
(Cai(t))[44] => 0.12242837187453144,
(Cai(t))[1] => 0.12242841647944337,
CaMKOX(t) => 0.0,
CaMKAOX(t) => 0.0,
CaMKA2(t) => 0.00044207217073239687,
CaMKA(t) => 0.001768184152613374,
CaMKPOX(t) => 0.0,
CaMKP(t) => 0.0008840673378217585,
CaMKBOX(t) => 0.0,
CaMKB(t) => 0.007981731867150314,
i_g(t) => 0.5604325888429168,
i_b(t) => 0.0039000856841458764,
i_fca(t) => 1.0034738185116592,
i_f(t) => 0.9997191241344096,
i_d(t) => 0.0003984892565765878,
i_Naj(t) => 0.45560472247710726,
i_Nah(t) => 0.3177100908980639,
i_Nam(t) => 0.025916964662761027,
i_y(t) => 0.14577199963333476,
i_IK(t) => 0.0005627935493672919,
i_OK(t) => 0.0017682980929073276,
i_CK2(t) => 0.0019547069321189953,
i_CK1(t) => 0.003025555797070552,
i_nKs(t) => 0.0023125154989896255,
i_sslow(t) => 0.9995208751162611,
i_s(t) => 0.9995208620092529,
i_r(t) => 0.0076932080813655705,
CaNSR(t) => 757.9220191189625,
CaJSR(t) => 757.7584977917347,
PO1RyR(t) => 0.0009533881645870898,
Back to top