Initial conditions#
using ModelingToolkit
using OrdinaryDiffEq, SteadyStateDiffEq, DiffEqCallbacks
using Plots
using CaMKIIModel
Plots.default(lw=2)
sys = build_neonatal_ecc_sys(simplify=true, reduce_iso=true, reduce_camk=true)
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5P())
sol = solve(prob, alg; abstol=1e-10, reltol=1e-10)
for (k, v) in zip(unknowns(sys), sol.u)
println(k, " => ", v, ",")
end
PO1RyR(t) => 0.0009533869164650395,
CaJSR(t) => 757.7584415089278,
CaNSR(t) => 757.9219626150108,
i_r(t) => 0.007693211678337785,
i_s(t) => 0.9995208612979508,
i_sslow(t) => 0.9995208743941031,
i_nKs(t) => 0.0023125177664633776,
i_CK1(t) => 0.0030255573405588996,
i_CK2(t) => 0.0019547079297586424,
i_OK(t) => 0.0017682999795251638,
i_IK(t) => 0.0005627943671546261,
i_y(t) => 0.145771862941969,
i_Nam(t) => 0.025916991915466293,
i_Nah(t) => 0.3177097377254939,
i_Naj(t) => 0.45560436347661976,
i_d(t) => 0.00039848963749662247,
i_f(t) => 0.9997191237761863,
i_fca(t) => 1.0034738195576776,
i_b(t) => 0.0039000906318028663,
i_g(t) => 0.5604323061184386,
CaMKB(t) => 0.009189826645419154,
CaMKBOX(t) => 0.0,
CaMKP(t) => 0.001244980813617707,
CaMKPOX(t) => 0.0,
CaMKA(t) => 0.002490000023033061,
CaMKA2(t) => 0.0006225202853278964,
CaMKAOX(t) => 0.0,
CaMKOX(t) => 0.0,
(Cai(t))[1] => 0.12242839653986817,
(Cai(t))[44] => 0.12242835197204655,
(Cai(t))[2] => 0.1224283950254269,
(Cai(t))[3] => 0.12242839355045002,
(Cai(t))[4] => 0.12242839211295142,
(Cai(t))[5] => 0.1224283907110672,
(Cai(t))[6] => 0.12242838934304646,
(Cai(t))[7] => 0.12242838800724282,
(Cai(t))[8] => 0.1224283867021067,
(Cai(t))[9] => 0.12242838542617844,
(Cai(t))[10] => 0.1224283841780817,
(Cai(t))[11] => 0.12242838295651776,
(Cai(t))[12] => 0.12242838176026002,
(Cai(t))[13] => 0.12242838058814914,
(Cai(t))[14] => 0.12242837943908835,
(Cai(t))[15] => 0.1224283783120395,
(Cai(t))[16] => 0.12242837720601897,
(Cai(t))[17] => 0.12242837612009433,
(Cai(t))[18] => 0.1224283750533809,
(Cai(t))[19] => 0.12242837400503885,
(Cai(t))[20] => 0.12242837297427031,
(Cai(t))[21] => 0.12242837196031682,
(Cai(t))[22] => 0.12242837096245693,
(Cai(t))[23] => 0.12242836998000393,
(Cai(t))[24] => 0.12242836901230389,
(Cai(t))[25] => 0.12242836805873358,
(Cai(t))[26] => 0.1224283671186988,
(Cai(t))[27] => 0.12242836619163264,
(Cai(t))[28] => 0.122428365276994,
(Cai(t))[29] => 0.12242836437426609,
(Cai(t))[30] => 0.12242836348295508,
(Cai(t))[31] => 0.1224283626025889,
(Cai(t))[32] => 0.12242836173271589,
(Cai(t))[33] => 0.12242836087290394,
(Cai(t))[34] => 0.12242836002273931,
(Cai(t))[35] => 0.12242835918182564,
(Cai(t))[36] => 0.12242835834978309,
(Cai(t))[37] => 0.12242835752624752,
(Cai(t))[38] => 0.12242835671086964,
(Cai(t))[39] => 0.12242835590331426,
(Cai(t))[40] => 0.12242835510325963,
(Cai(t))[41] => 0.12242835431039671,
(Cai(t))[42] => 0.12242835352442866,
(Cai(t))[43] => 0.12242835274507005,
vm(t) => -67.45749954406459,
na_i(t) => 12237.05987353409,
k_i(t) => 152560.00275963036,
This notebook was generated using Literate.jl.