Initial conditions

Initial conditions#

using ModelingToolkit
using OrdinaryDiffEq
using SteadyStateDiffEq
using Plots
using CaMKIIModel
Plots.default(lw=2)

sys = build_neonatal_ecc_sys(simplify=true, reduce_iso=true, reduce_camk=true)
prob = SteadyStateProblem(sys, [])
alg = DynamicSS(Rodas5P())

sol = solve(prob, alg; abstol=1e-10, reltol=1e-10)

for (k, v) in zip(unknowns(sys), sol.u)
    println(k, " => ", v , ",")
end
PO1RyR(t) => 0.0010281839910885023,
CaJSR(t) => 760.8975487508931,
CaNSR(t) => 761.074631096305,
i_r(t) => 0.007801773149537252,
i_s(t) => 0.9994990953929341,
i_sslow(t) => 0.9994991104290292,
i_nKs(t) => 0.002381225787387567,
i_CK1(t) => 0.003072169280426308,
i_CK2(t) => 0.001984822228874387,
i_OK(t) => 0.0018254219179258068,
i_IK(t) => 0.0005877360700562436,
i_y(t) => 0.1417591261843568,
i_Nam(t) => 0.026746082883602973,
i_Nah(t) => 0.5410839201894001,
i_Naj(t) => 0.5455857504929963,
i_d(t) => 0.00041007163947525505,
i_f(t) => 0.9997081852973968,
i_fca(t) => 1.0034109012843289,
i_b(t) => 0.004051224554061038,
i_g(t) => 0.5519425199993471,
CaMKB(t) => 0.009269675598535563,
CaMKBOX(t) => 0.0,
CaMKP(t) => 0.0012719470181881106,
CaMKPOX(t) => 0.0,
CaMKA(t) => 0.002543926226613123,
CaMKA2(t) => 0.0006359985716912645,
CaMKAOX(t) => 0.0,
CaMKOX(t) => 0.0,
(Cai(t))[1] => 0.12362283321794773,
(Cai(t))[44] => 0.12362279885672568,
(Cai(t))[2] => 0.1236228320596859,
(Cai(t))[3] => 0.12362283093119449,
(Cai(t))[4] => 0.12362282983096733,
(Cai(t))[5] => 0.12362282875759087,
(Cai(t))[6] => 0.12362282770973723,
(Cai(t))[7] => 0.12362282668615789,
(Cai(t))[8] => 0.1236228256856777,
(Cai(t))[9] => 0.12362282470718965,
(Cai(t))[10] => 0.12362282374965006,
(Cai(t))[11] => 0.12362282281207392,
(Cai(t))[12] => 0.12362282189353103,
(Cai(t))[13] => 0.12362282099314216,
(Cai(t))[14] => 0.12362282011007562,
(Cai(t))[15] => 0.12362281924354401,
(Cai(t))[16] => 0.12362281839280147,
(Cai(t))[17] => 0.12362281755714079,
(Cai(t))[18] => 0.12362281673589112,
(Cai(t))[19] => 0.1236228159284155,
(Cai(t))[20] => 0.12362281513410889,
(Cai(t))[21] => 0.1236228143523961,
(Cai(t))[22] => 0.12362281358273,
(Cai(t))[23] => 0.12362281282458983,
(Cai(t))[24] => 0.1236228120774796,
(Cai(t))[25] => 0.12362281134092676,
(Cai(t))[26] => 0.12362281061448062,
(Cai(t))[27] => 0.1236228098977113,
(Cai(t))[28] => 0.12362280919020843,
(Cai(t))[29] => 0.1236228084915801,
(Cai(t))[30] => 0.12362280780145177,
(Cai(t))[31] => 0.12362280711946545,
(Cai(t))[32] => 0.12362280644527866,
(Cai(t))[33] => 0.12362280577856367,
(Cai(t))[34] => 0.1236228051190067,
(Cai(t))[35] => 0.12362280446630715,
(Cai(t))[36] => 0.123622803820177,
(Cai(t))[37] => 0.12362280318034008,
(Cai(t))[38] => 0.12362280254653153,
(Cai(t))[39] => 0.12362280191849712,
(Cai(t))[40] => 0.12362280129599287,
(Cai(t))[41] => 0.12362280067878444,
(Cai(t))[42] => 0.12362280006664662,
(Cai(t))[43] => 0.12362279945936308,
vm(t) => -67.25113337666386,
na_i(t) => 12247.656077053527,
k_i(t) => 152549.01022532498,

This notebook was generated using Literate.jl.