Model descriptions#

Hill equation.

\[ H(x, k) := \frac{x}{x + k} \]
\[ H(x, k, n) := \frac{x^n}{x^n + k^n} \]

Relative exponential function. The definition here is reciprocal to the Python one.

\[ exprel(x) := \frac{x}{ \exp(x) - 1} \]

Logistic function

\[ expit(x) := \frac{1}{1 + \exp(-x)} \]

Thermal voltage.

\[ V_T = \frac{RT}{F} \]

GHK flux equation.

\[ GHK(p, z, V_m, S_i, S_o) := pzF \cdot exprel(-zV_m/V_T) \cdot (S_i - S_o \exp(-zV_m/V_T)) \]

Ion concentrations:

\[\begin{split} \begin{align} na_x &= \mathrm{[Na^+]_x} \\ k_x &= \mathrm{[K^+]_x} \\ ca_x &= \mathrm{[Ca^{2+}]_x} \\ \end{align} \end{split}\]

Reversal potentials:

\[\begin{split} \begin{align} E_{Na} &= V_T \ln \frac{na_o}{na_i} \\ E_{K } &= V_T \ln\frac{k_o}{k_i} \\ E_{Ca} &= 0.5V_T \ln \frac{ca_o}{ca_{sl}} \\ E_{Kr} &= V_T \ln\left( \frac{0.98 k_o + 0.02na_o}{0.98 k_i + 0.02a_i} \right) \\ \end{align} \end{split}\]

General parameters#

Parameter

Value

Units

Description

\(r_{SR}\)

6

μm

Radius of SR

\(r_{SL}\)

10.5

μm

Radius of sarcolemma

\(V_{SR}\)

0.0903

pL

SR volume

\(V_{NSR}\)

0.9\(V_{SR}\)

pL

Network SR volume

\(V_{JSR}\)

0.1\(V_{JSR}\)

pL

Junctional SR volume

\(V_{subSR}\)

0.046

pL

Sub-SR volume

\(V_{subSL}\)

0.137

pL

Sub-sarcolemma volume

\(V_{myo}\)

3.944

pL

Cytosolic volume

\(A_{cap}\)

1385.44

μm²

Cell membrane area

\(C_m\)

1

μFcm⁻²

Cell membrane capacitance

\(ca_o\)

1.796

mM

External calcium concentration

\(na_o\)

154.578

mM

External sodium concentration

\(k_o\)

5.366

mM

External potassium concentration

\(\mathrm{[ATP]}\)

5

mM

ATP concentration

Cytosolic calcium diffusion#

Cytosolic calcium is diffused between sub-sarcolemma (SL) and sub-sarcoplasmic (SR) spaces.

Calcium buffering in each compartment:

\[\begin{split} \begin{align} \beta_{Ca,x} &= \left(1 + \frac{\Sigma Trpn \cdot Km_{Trpn, 2}}{(ca_x + Km_{Trpn, 2})^2} + \frac{\Sigma Cmdn \cdot Km_{Cmdn}}{(ca_x + Km_{Cmdn, 2})^2} \right)^{-1} \\ Km_{Trpn, 2} &= \frac{Km_{Trpn}}{fPKA_{TnI}} \\ fPKA_{TnI} &= 1.61 - 0.61 \frac{1 - TnI_{PKAp}}{1 - fracTnIp_0} \end{align} \end{split}\]

Calcium diffusion space is divided into \((r_{SL} - r_{SR}) / dx\) compartments.

For i = 2 to \((r_{SL} - r_{SR}) / dx - 1\)

\[\begin{split} \begin{align} \frac{d}{dt}ca_i &= \frac{D_{ca} \cdot \beta_{Ca,i}}{dx^2 \cdot j_i} ((j_i + 1)ca_{i+1} - 2j_i \cdot ca_{i} + (j_i - 1)ca_{i-1}) \\ j_i &= r_{SR} / dx + i - 1 \end{align} \end{split}\]

Otherwise,

\[\begin{split} \begin{align} \frac{d}{dt}ca_1 &= \frac{D_{ca} \cdot \beta_{Ca,1}}{dx^2 \cdot j_1} ((j_1 + 1)ca_{2} - 2j_1 \cdot ca_{1} + (j_1 - 1)ca_{1} + J_{CaSR}) \\ \frac{d}{dt}ca_n &= \frac{D_{ca} \cdot \beta_{Ca,n}}{dx^2 \cdot j_n} ((j_n + 1)ca_{n} - 2j_n \cdot ca_{n} + (j_n - 1)ca_{n-1} + J_{CaSL}) \\ j_1 &= r_{SR} / dx \\ j_n &= r_{SL} / dx \\ ca_{sr} &= ca_1 \\ ca_{sl} &= ca_n \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(\Sigma Trpn\)

35

μM

Total troponin content

\(Km_{Trpn}\)

0.5

μM

Half-saturation Ca concentration

\(\Sigma Cmdn\)

30

μM

Total calmodulin content

\(Km_{Cmdn}\)

2.38

μM

Half-saturation Ca concentration

\(D_{ca}\)

7

μm²ms⁻¹

Calcium diffusion rate

\(dx\)

0.1

μm

Discretization distance

\(fracTnIp_0\)

0.062698

-

Baseline effect of PKA on Troponin

Endoplasmic reticulum#

Including ryanodine receptor (RyR) flux (Jrel), SERCA flux (Jup), SR leakage (Jleak), and calcium diffusion from NSR to JSR (Jtr).

\[\begin{split} \begin{align} J_{CaSR} &= \frac{V_{NSR}}{V_{subSR}} (J_{leak} - J_{up}) + J_{rel} \\ J_{rel} &= k_{RyR} \cdot PO1_{RyR} \cdot (ca_{JSR} - ca_{sr}) \\ J_{tr} &= ktrCa_{SR} (ca_{JSR} - ca_{NSR}) \\ J_{leak} &= 0.5 (1 + 5 RyR_{CKp}) kSR_{leak} \\ J_{up} &= Vmax_{SR} \frac{fSR - rSR}{1 + fSR + rSR} \\ \frac{d}{dt} PO1_{RyR} &= kapos_{RyR} \cdot H(ca_{sr}, Km_{RyR}, 4) \cdot PC1_{RyR} - kaneg_{RyR} \cdot PO1_{RyR} \\ \frac{d}{dt} ca_{JSR} &= \beta_{SR} (-J_{rel} V_{subSR} + J_{tr} V_{NSR}) / V_{JSR} \\ \frac{d}{dt} ca_{NSR} &= J_{up} - J_{leak} - J_{tr} \\ \beta_{SR} &= \frac{1}{1 + \frac{\Sigma Csqn Km_{csqn}}{(ca_{JSR} + Km_{csqn})^2}} \\ fSR &= \left( \frac{ca_{sr}}{Kmfp} \right)^2 \\ rSR &= \left( \frac{ca_{NSR}}{Kmr_{SR}} \right)^2 \\ KmRyR &= 3.51 \cdot expit(-\frac{ca_{JSR} - 530}{200}) + 0.25 \\ PC1_{RyR} &= 1 - PO1_{RyR} \\ Kmfp &= \min(fCKII_{PLB}, fPKA_{PLB}) \\ fCKII_{PLB} &= (1 - 0.5531) \frac{1 - fracPLBp}{fracPKA_PLBo} + 0.5531 \\ fCKII_{PLB} &= (1 - 0.5 * fracPLB_{CKp}) \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(k_{RyR}\)

20

Hz

RyR permeability

\(kapos_{RyR}\)

1000

Hz

RyR state transition rate

\(kaneg_{RyR}\)

160

Hz

RyR state transition rate

\(Vmax_{SR}\)

0.9996

μM/ms

SERCA reaction rate

\(Kmf_{SR}\)

0.5

μM

Calcium affinity for SERCA

\(Kmr_{SR}\)

7000\(Kmf_{SR}\)

μM

Calcium affinity for SERCA

\(kSR_{leak}\)

0.005

Hz

SR leak rate

\(ktrCa_{SR}\)

50

Hz

Calcium dissusion rate from NSR to JSR

\(\Sigma Csqn\)

24.750

mM

Calsequestrin concentration

\(Km_{csqn}\)

0.8

mM

Calcium affinity for calsequestrin

\(fracPKA_{PLBo}\)

0.920245

-

Sarcolemmal ion channels#

Sodium channels#

Including fast sodium (\(\mathrm{I_{Na}}\)) and background sodium (\(\mathrm{I_{Na,b}}\)) currents.

\[\begin{split} \begin{align} \mathrm{I_{Na}} &= \bar G_{Na} \cdot m_{Na}^{3} \cdot h_{Na} \cdot j_{Na} (V_m-E_{Na}) \\ \mathrm{I_{Na,b}} &= \bar G_{Na,b} (V_m - E_{Na}) \\ \frac{dm_{Na}}{dt} &= \alpha_{m} - m_{Na}(\alpha_{m} + \beta_{m}) \\ \frac{dh_{Na}}{dt} &= \alpha_{h} - h_{Na}(\alpha_{h} + \beta_{h}) \\ \frac{dj_{Na}}{dt} &= \alpha_{j} - m_{Na}(\alpha_{j} + \beta_{j}) \\ \alpha_{m} &= 3.2 \mathrm{ms}^{-1} exprel(-(V_m + 47.13) / 10) \\ \beta_{m} &= 0.08 \mathrm{ms}^{-1} \exp(-V_m / 11) \\ \\ \text{For} \ V_m & \ge -40\text{mV} \\ \alpha_{h} &= \alpha_{j} = 0 \\ \beta_{h} &= 7.6923 \mathrm{ms}^{-1} expit((V_m+10.66)/11.1) \\ \beta_{j} &= 0.3 \mathrm{ms}^{-1} \exp(-2.535 \cdot 10^{-7}V_m) expit(0.1(V_m + 32)) \\ \\ \text{For} \ V_m & < -40\text{mV} \\ \alpha_{h} &= 0.135 \text{ms}^{-1} \exp(-(V_m+80)/6.8) \\ \alpha_{j} &= (-127140 \exp(0.2444 V_m)-3.474 \cdot 10^{-5}\exp(-0.04391 V_m))\frac{V_m + 37.78}{1 + \exp(0.311( V_m + 79.23))} / \text{ms} \\ \beta_{h} &= (3.56\exp(0.079 V_m) + 3.1 \cdot 10^{5} \exp(0.35 V_m)) / \text{ms} \\ \beta_{j} &= \frac{0.1212 \mathrm{ms}^{-1} \exp(-0.01052 V_m)}{1 + \exp(-0.1378(V_m + 40.14))} \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(G_{Na}\)

12.8

mS/μF

Fast sodium channels conductance

\(G_{Na,b}\)

0.0026

mS/μF

Background sodium channels conductance

Potassium currents#

\[\begin{split} \begin{align} \mathrm{I_{K1}} &= \mathrm{G_{K1}} \cdot H(\mathrm{k_o}, 210) \frac{ ( V_m - 6.1373 - E_K )}{0.1653 + \exp(0.0319 (V_m - 6.1373 - E_K))} \\ \mathrm{I_{to}} &= G_t \cdot i_r (( 1 - f_{is} ) i_{s,slow} + f_{is} i_s )( V_m - E_K) \\ \mathrm{I_{Ks}} &= 2 G_{Ks} \cdot i_{nKs}^{2}( 0.68804 + 0.71283 \mathrm{IKUR_{PKAp}}) (V_m - E_K) \\ \mathrm{I_{Kr}} &= G_{Kr} \cdot i_{OK} (V_m - E_{Kr}) \\ \mathrm{I_{fNa}} &= f_{Na} \cdot G_f \cdot i_y \cdot ( V_m - E_{Na}) \\ \mathrm{I_{fK}} &= ( 1 - f_{Na}) \cdot G_f \cdot i_y \cdot ( V_m - E_K ) \\ \mathrm{I_{f}} &= \mathrm{I_{fK}} + \mathrm{I_{fNa}} \\ \frac{d i_r }{dt} &= \frac{ r_∞ - i_r }{τ_r} \\ \frac{d i_s }{dt} &= \frac{ s_∞ - i_s }{τ_s} \\ \frac{d i_{s,slow} }{dt} &= \frac{ slow_∞ - i_{s,slow} }{τ_{s,slow} } \\ \frac{d i_{nKs} }{dt} &= \frac{ nks_∞ - i_{nKs} }{τ_{nKs}} \\ \frac{d i_{CK1} }{dt} &= k_{b, IKr} i_{CK2} - k_{f, IKr} i_{CK1} + 0.022348 e^{0.01176 V_m } i_{CK0} - 0.047002 e^{ - 0.0631 V_m } i_{CK1} \\ \frac{d i_{CK2} }{dt} &= - k_{b, IKr} i_{CK2} + k_{f, IKr} i_{CK1} - 0.013733 i_{CK2} e^{0.038198 V_m} + 6.89 \cdot 10^{-5} e^{ - 0.04178 V_m} i_{OK} \\ \frac{d i_{OK} }{dt} &= 0.006497 i_{IK} e^{-0.03268 V_m} + 0.013733 i_{CK2} e^{0.038198 V_m} - 6.89 \cdot 10^{-5} e^{-0.04178 V_m} i_{OK} - 0.090821 e^{0.023391 V_m} i_{OK} \\ \frac{d i_{IK} }{dt} &= - 0.006497 i_{IK} e^{ - 0.03268 V_m } + 0.090821 e^{0.023391 V_m } i_{OK} \\ \frac{d i_y}{dt} &= \frac{y_∞ - i_y}{τ_y} \\ s_∞ &= expit((V_m + 31.97156) / -4.64291) \\ r_∞ &= expit((V_m - 3.55716) / 14.61299) \\ slow_∞ &= s_∞ \\ nks_∞ &= \frac{\alpha_{nks}}{\alpha_{nks} + \beta_{nks}} \\ \alpha_{nks} &= 0.00000481333 / 0.128 * exprel(-0.128 * (V + 26.5)) \\ \beta_{nks} &= 0.0000953333 * \exp(-0.038 * (V + 26.5)) \\ τ_r &= \frac{1000 \text{ms}}{45.16 \exp(0.03577( V_m + 50)) + 98.9 \exp( - 0.1 ( V_m + 38))} \\ τ_s &= 8.1\text{ms} + 350\text{ms} \cdot \exp( - \frac{1}{225}(V_m + 70)^{2}) \\ τ_{s,slow} &= 72.4\text{ms} + 3700\text{ms} \cdot \exp( - \frac{1}{900}( V_m + 70 )^{2}) \\ 1 &= i_{IK} + i_{CK2} + i_{OK} + i_{CK0} + i_{CK1} \\ y_∞ &= expit(-0.15798 (V_m + 78.65)) \\ τ_y &= \frac{1000 \text{ms}}{0.56236 \exp(-0.070472 (V_m + 75)) + 0.11885 \exp(0.035249 ( V_m + 75))} \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(G_{K1}\)

0.0515

mS/μF

Potassium channels conductance

\(G_t\)

0.1

mS/μF

Transient outward potassium channels conductance

\(G_{Ks}\)

0.05

mS/μF

Potassium channels conductance

\(τ_{nKs}\)

750

ms

Potassium channels time scale

\(G_{Kr}\)

0.06

mS/μF

Potassium channels conductance

\(k_{f, IKr}\)

0.023761

1/ms

Potassium channels transition rate

\(k_{b, IKr}\)

0.036778

1/ms

Potassium channels transition rate

\(G_f\)

0.021

mS/μF

Funny current conductance

\(f_{Na}\)

0.021

-

Funny current sodium fraction

\(f_{is}\)

0.706

-

Calcium currents#

L-type calcium channels, T-type calcium channels, and background calcium currents.

\[\begin{split} \begin{align} J_{CaSL} &= (2 I_{NaCa} - I_{CaL} - I_{CaT} - I_{Cab}) \frac{A_{CAP} C_m}{2 F V_{subSL}} \\ \mathrm{I_{CaL}} &= \mathrm{ICa_{scale}} \cdot G_{CaL} \cdot i_d \cdot i_f \cdot i_fca \cdot GHK(G_{CaL}, 2, V_m, \mathrm{ca_{sl}}, 0.341 \mathrm{ca_o}) \\ \mathrm{I_{CaT}} &= \mathrm{gCaT} \cdot i_b \cdot i_g ( V_m + 106.5 - \mathrm{E_Ca}) \\ \mathrm{I_{Cab}} &= \mathrm{gCab} (V_m - \mathrm{E_Ca}) \\ \frac{d i_d }{dt} &= \frac{d_∞ - i_d}{τ_d} \\ \frac{d i_f }{dt} &= \frac{f_∞ - i_f}{τ_f} \\ \frac{d i_{fca} }{dt} &= \frac{(fca_∞ - i_{fca}) \left( 1 - \left( fca_∞ > i_{fca} \right) \left( V_m > -60 \text{mV} \right) \right)}{τ_{fca}} \\ \frac{d i_b }{dt} &= \frac{b_∞ - i_b}{τ_b} \\ \frac{d i_g }{dt} &= \frac{g_∞ - i_g}{τ_g} \\ \mathrm{ICa_{scale}} &= \mathrm{ICa_{scale, 0}} \left( 1 + \frac{0.56}{1 - \frac{\mathrm{fracLCCbpISO}}{\mathrm{fracLCCbp0}}} \right) \\ \mathrm{I_{NaCa}} &= \mathrm{kNaCa} \cdot \mathrm{ICa_{scale}} \frac{\mathrm{na_i}^{3} \mathrm{ca_o} \exp( \mathrm{gNaCa} V_m /V_T ) - \mathrm{na_o}^{3} \mathrm{ca_{sl}} \mathrm{fNaCa} \exp (( \mathrm{gNaCa} - 1 ) V_m F /RT )} {1 + \left(\mathrm{na_i}^3 \mathrm{ca_o} + \mathrm{na_o}^{3} \mathrm{ca_{sl}} \mathrm{fNaCa} \right) \mathrm{dNaCa}} \\ d_∞ &= expit((V + 11.1) / 7.2) \\ τ_d &= (\alpha_d \beta_d + \gamma_d) \\ \alpha_d &= 1.4 expit((V_m + 35) / 13) + 0.25 \\ \beta_d &= 1.4 expit(-(V_m + 5) / 5) \\ \gamma_d &= expit((V_m - 50) / 20) \\ f_∞ &= expit(-(V_m + 23.3) / 5.4) \\ τ_f &= 120 + 165 * expit((V_m - 25) / 10) + 1125 \exp( -(V_m + 27)^{2} / 240) \\ fca_∞ &= (\alpha_{fca} + \beta_{fca} + \gamma_{fca} + 0.23) / 1.46 \\ \alpha_{fca} &= H(0.4875, \mathrm{ca_{sl}}, 8) \\ \beta_{fca} &= 0.1 expit(-(\mathrm{ca_{sl}} - 0.5) / 0.1) \\ \gamma_{fca} &= 0.2 expit(-(\mathrm{ca_{sl}} - 0.75) / 0.8) \\ b_∞ &= expit((V_m + 37.49098) / 5.40634) \\ τ_b &= 0.6 + 5.4 expit(-0.03 (V_m + 100)) \\ g_∞ &= expit(-(V_m + 66) / 6) \\ τ_g &= 1 + 40 expit(-0.08 (V_m + 65)) \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

fNaCa

1

-

kNaCa

2.268 * 10⁻¹⁶

μAμF⁻¹μM⁻⁴

dNaCa

10⁻¹⁶

μM⁻⁴

gNaCa

0.5

-

\(G_{CaL}\)

6.3 * 10⁻⁵

m³s⁻¹F⁻¹

\(τ_{fca}\)

10

ms

\(g_{CaT}\)

0.2

mSμF⁻¹

\(g_{Cab}\)

0.0008

mSμF⁻¹

Na-K pump#

\[\begin{split} \begin{align} \mathrm{I_{NaK}} &= I_{NaK}^{max} fNaK \frac{\mathrm{k_o}}{ \mathrm{k_o} + KmKo_{NaK} } \frac{\mathrm{na_i}^{nNaK}}{ \mathrm{na_i}^{nNaK} + KmNai_{NaK}^{nNaK} } \\ fNaK &= (1 + 0.1245 \exp(-0.1 V_m/ V_T) + 0.0365 \sigma_{NaK} \exp(V_m/V_T))^{-1} \\ \sigma_{NaK} &= (\exp(\mathrm{na_i} / 67.3 \text{mM}) - 1) / 7 \end{align} \end{split}\]

Parameter

Value

Units

Description

\(I_{NaK}^{max}\)

2.7

μA/μF

Maximal rate of Na-K pump

\(KmNai_{NaK}\)

18.6

mM

\(KmKo_{NaK}\)

1.5

mM

\(nNaK\)

3.2

-

Beta-adrenergic system#

Activities are fitted to the steady-state activities in the Morroti model.

\[\begin{split} \begin{align} f_{PKACI} &= PKACI_0 + PKACI_{act} H(ISO, PKACI_{KM}) \\ f_{PKACII} &= PKACII_0 + PKACII_{act} H(ISO, PKACII_{KM}) \\ f_{PP1} &= PP1_0 + PP1_{act} H(PP1_{KI}, ISO) \\ f_{PLBp} &= PLBp_0 + PLBp_{act} H(ISO, PLBp_{KM}, PLBp_{nHill}) \\ f_{PLMp} &= PLMp_0 + PLMp_{act} H(ISO, PLMp_{KM}, PLMp_{nHill}) \\ TnI_{PKAp} &= TnIp_0 + TnIp_{act} H(ISO, TnIp_{KM}, TnIp_{nHill}) \\ LCCa_{PKAp} &= LCCap_0 + LCCap_{act} H(ISO, LCCap_{KM}) \\ LCCb_{PKAp} &= LCCbp_0 + LCCbp_{act} H(ISO, LCCbp_{KM}) \\ KUR_{PKAp} &= KURp_0 + KURp_{act} H(ISO, KURp_{KM}) \\ RyR_{PKAp} &= RyRp_0 + RyRp_{act} H(ISO, RyRp_{KM}) \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(PKACI_0\)

0.0734

-

Basal PKACI activity

\(PKACI_{act}\)

0.1995

-

Activated PKACI activity

\(PKACI_{KM}\)

0.0139

μM

PKACI sesitivity to iso

\(PKACII_0\)

0.1840

-

Basal PKACII activity

\(PKACII_{act}\)

0.3444

-

Activated PKACII activity

\(PKACII_{KM}\)

0.0103

μM

PKACII sesitivity to iso

\(PP1_0\)

0.8927

-

Basal PP1 activity

\(PP1_{act}\)

0.0492

-

Activated PP1 activity

\(PP1_{KI}\)

0.00637

μM

PP1 sesitivity to iso

\(PLBp_0\)

0.0824

-

\(PLBp_{act}\)

0.7961

-

\(PLBp_{KM}\)

0.00597

μM

\(PLBp_{nHill}\)

1.8167

-

\(PLMp_0\)

0.1172

-

\(PLMp_{act}\)

0.6645

-

\(PLMp_{KM}\)

0.00823

μM

\(PLMp_{nHill}\)

1.35784

-

\(TnIp_0\)

0.0669

-

\(TnIp_{act}\)

0.7524

-

\(TnIp_{KM}\)

0.007913

μM

\(TnIp_{nHill}\)

1.6736

-

\(LCCap_0\)

0.2205

-

\(LCCap_{act}\)

0.2339

-

\(LCCap_{KM}\)

0.00726

μM

\(LCCbp_0\)

0.2517

-

\(LCCbp_{act}\)

0.2461

-

\(LCCbp_{KM}\)

0.00695

μM

\(KURp_0\)

0.4390

-

\(KURp_{act}\)

0.2563

-

\(KURp_{KM}\)

0.00557

μM

\(RyRp_0\)

0.2054

-

\(RyRp_{act}\)

0.2399

-

\(RyRp_{KM}\)

0.0075135

μM

CaMKII system#

\[\begin{split} \begin{align} \mathrm{ca_{avg}} &= \frac{\sum^N_{i=1} \mathrm{ca_i}}{N} \\ CaMK_{act} &= 1 - CaMK \\ v_{IB} &= k_f \cdot CaMK - k_b \cdot CaMKB \\ v_{IoBo} &= k_f \cdot r_{CaMKO} \cdot CaMKOX - k_b \cdot CaMKBOX \\ v_{AP} &= k_f \cdot r_{CaMKP} \cdot CaMKA - k_b \cdot CaMKP \\ v_{AoPo} &= k_f \cdot r_{CaMKP} \cdot CaMKAOX - k_b \cdot CaMKPOX \\ kph &= kphos_{CaMK} \cdot aMK_{act} \\ v_{BP} &= kph \cdot CaMKB - kdeph_{CaMK} \cdot CaMKP \\ v_{BoPo} &= kph \cdot CaMKBOX - kdeph_{CaMK} \cdot CaMKPOX \\ v_{P1P2} &= k_{P1P2} \cdot CaMKA - k_{P2P1} \cdot CaMKA2 \\ v_{AI} &= kdeph_{CaMK} \cdot CaMKA \\ v_{AoIo} &= kdeph_{CaMK} \cdot CaMKAOX \\ v_{BBo} &= kox_{CaMK} \cdot \mathtt{ROS} \cdot CaMKB - krd_{CaMK} \cdot CaMKBOX \\ v_{PPo} &= kox_{CaMK} \cdot \mathtt{ROS} \cdot CaMKP - krd_{CaMK} \cdot CaMKPOX \\ v_{IoI} &= krd_{CaMK} \cdot CaMKOX \\ v_{AoA} &= krd_{CaMK} \cdot CaMKAOX \\ camkb_\infty &= kfa_{CaMK} H(\mathrm{ca_{avg}}, kmCa_{CaMK}, nCa_{CaMK}) + kfb_{CaMK} \\ CaMK &= 1 - (CaMKB + CaMKBOX + CaMKP + CaMKPOX + CaMKA + CaMKA2 + CaMKAOX + CaMKOX) \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(r_{CaMK}\)

3

Hz

CaMK-CaM binding rate

\(r_{CaMKO}\)

0

-

Oxidized CaMK-CaM binding ratio

\(r_{CaMKP}\)

0

-

Phosphorylated CaMK-CaM binding ratio

\(kb_{CaMKP}\)

1/3

Hz

Dissociation rate of CaMKP

\(kfa_{CaMK}\)

0.4393

-

Activated CaMK-CaM binding ratio

\(kfb_{CaMK}\)

0.0056

-

Basal CaMK-CaM binding ratio

\(kmCa_{CaMK}\)

0.9716

μM

Calcium affinity to CaMK-CaM

\(nCa_{CaMK}\)

2.293

-

Hill coefficient for calcium

\(kphos_{CaMK}\)

5

Hz

Autophosphorylation rate

\(kdeph_{CaMK}\)

1/6

Hz

Dephosphorylation rate

\(k_{P1P2}\)

1/60

Hz

Second autophosphorylation rate

\(k_{P2P1}\)

1/15

Hz

Second dephosphorylation rate

\(kox_{CaMK}\)

291

Hz/mM

Oxidation rate

\(krd_{CaMK}\)

1/45

Hz

Reduction rate

ODE system#

\[\begin{split} \begin{align} \frac{d\mathrm{na_i}}{dt} &= -(I_{Na} + 3I_{NaCa} + 3I_{NaK})\frac{A_{cap}}{V_{myo}F} + (V_{NHE} - 3V_{NaCa}) \frac{V_{mito}}{V_{myo}} \\ \frac{d[K^+]_i}{dt} &= -(I_{Ks} + I_{Kr} + I_{K1} + I_{Kp} + I_{Ca,K}-2I_{NaK})\frac{A_{cap}}{V_{myo}F} \\ C_m\frac{dV_m}{dt} &= -(I_{Na} + I_{CaL} + I_{Kr} + I_{Ks} + I_{K1} + I_{Kp} + I_{NaCa} + I_{NaK} + I_{pCa} + I_{Ca, b} + I_{K_{ATP}} + I_{stim}) \\ β_i &= \frac{(K_m^{CMDN} + [Ca^{2+}]_i)^2}{ (K_m^{CMDN} + [Ca^{2+}]_i)^2 + K_m^{CMDN} \cdot [CMDN]_{tot}} \\ β_{SR} &= \frac{(K_m^{CSQN} + [Ca^{2+}]_{SR})^2}{(K_m^{CSQN} + [Ca^{2+}]_{SR})^2 + K_m^{CSQN} \cdot [CSQN]_{tot}} \\ \frac{d[Ca^{2+}]_i}{dt} &= \beta_i(J_{xfer}\frac{V_{ss}}{V_{myo}} - J_{up} - J_{trpn} - (I_{Ca,b} -2I_{NaCa} + I_{pCa})\frac{A_{cap}}{2V_{myo}F} + (V_{NaCa} - V_{uni})\frac{V_{mito}}{V_{myo}}) \\ \frac{d[Ca^{2+}]_{SR}}{dt} &= \beta_{SR}(J_{up}\frac{V_{myo}}{V_{SR}} - J_{rel}\frac{V_{ss}}{V_{SR}}) \\ \end{align} \end{split}\]