Initial conditions#
1Hz pacing for 1000 seconds
using ProgressLogging
using OrdinaryDiffEq
using ModelingToolkit
using Plots
using DataFrames
using CSV
using ECMEDox
using ECMEDox: second, mM, Hz, μM
Plots.default(lw=2, size=(600, 600))
tend = 1000.0second
bcl = 1second
@named sys = build_model(; bcl, tend)
sts = unknowns(sys)
u0 = build_u0(sys)
62-element Vector{Pair{Symbolics.Num, Float64}}:
sox_i(t) => 0.0009551938366685581
h2o2_i(t) => 0.0007085981112491873
gssg_i(t) => 2.092347017623283
Q_n(t) => 1877.6012975036206
Qdot_n(t) => 151.15043772121842
QH2_n(t) => 35.91753587245618
QH2_p(t) => 35.86290819940413
Qdot_p(t) => 21.81190373831128
cytb_1(t) => 209.8354978086165
cytb_2(t) => 75.36600796391296
⋮
ca_jsr(t) => 1265.5645352477409
ca_ss(t) => 0.27469188451378845
ca_m(t) => 1.118702765625523
adp_i(t) => 152.965321024685
adp_m(t) => 60.81807906669693
nadh_m(t) => 1671.260518639995
dpsi(t) => 153.61961418650026
sox_m(t) => 5.188491782991169e-6
vm(t) => -84.60049598496542
The model is very sensitive to aconitase activity The phase transition (of the Q cycle) is between 250uM to 260uM of DOX
prob = ODEProblem(sys, u0, tend)
alg = FBDF()
@time sol = solve(prob, alg; reltol=1e-7, abstol=1e-7, progress=true, maxiters=1e8, save_everystep=false)
for i in sts
println("sys.", i, " => ", sol[i][end], ",")
end
33.352673 seconds (30.25 M allocations: 1.412 GiB, 1.21% gc time, 24.36% compilation time)
sys.sox_i(t) => 0.0007321186803613739,
sys.h2o2_i(t) => 0.0005488883139951616,
sys.gssg_i(t) => 1.6021933885167396,
sys.Q_n(t) => 1887.0035563906813,
sys.Qdot_n(t) => 143.93123673637191,
sys.QH2_n(t) => 32.582710067211956,
sys.QH2_p(t) => 32.5204697894615,
sys.Qdot_p(t) => 16.896228238017407,
sys.cytb_1(t) => 220.11871316444365,
sys.cytb_2(t) => 65.51472661726301,
sys.cytb_3(t) => 38.16495645229637,
sys.fes_ox(t) => 284.08061578593913,
sys.cytc1_ox(t) => 318.4193439220779,
sys.cytc_ox(t) => 311.39395092594395,
sys.isoc(t) => 33.09529535045322,
sys.akg(t) => 20.417373425631965,
sys.scoa(t) => 39.55369806197239,
sys.suc(t) => 3.158476341481553,
sys.fum(t) => 212.21869221022342,
sys.mal(t) => 187.52678928708377,
sys.oaa(t) => 9.007358427649836,
sys.m_na(t) => 0.001964209847811986,
sys.h_na(t) => 0.9547317225297512,
sys.j_na(t) => 0.9700236245306231,
sys.x_k(t) => 0.0017258118023845068,
sys.ltr_ca(t) => 32.62222983378509,
sys.htr_ca(t) => 138.42064537815577,
sys.x_p0(t) => 0.036028261997860106,
sys.x_p1(t) => 0.03310577188407254,
sys.x_p2(t) => 0.06203122194803015,
sys.x_p3(t) => 0.05409926799766632,
sys.x_n1(t) => 0.08236887865018654,
sys.adp_ic(t) => 849.7776990215127,
sys.crp_i(t) => 1925.1084051487373,
sys.crp_ic(t) => 1850.4657754814311,
sys.po1_ryr(t) => 0.0006926630147802001,
sys.po2_ryr(t) => 3.933096603762274e-8,
sys.pc2_ryr(t) => 0.5313892881117337,
sys.c1_lcc(t) => 1.7220144071541848e-5,
sys.c2_lcc(t) => 1.1184767162709786e-10,
sys.c3_lcc(t) => 3.2126559486268037e-16,
sys.c4_lcc(t) => 6.517056440218992e-19,
sys.o_lcc(t) => -3.902001102527125e-20,
sys.cca0_lcc(t) => 0.005772785669402226,
sys.cca1_lcc(t) => 3.9995532471359606e-7,
sys.cca2_lcc(t) => 1.0391384813046274e-11,
sys.cca3_lcc(t) => 1.1991169566377074e-16,
sys.cca4_lcc(t) => 2.968660243150398e-20,
sys.x_yca(t) => 0.7430612226002593,
sys.vm(t) => -83.55726123216724,
sys.na_i(t) => 14907.17174443653,
sys.k_i(t) => 137267.22262861088,
sys.ca_i(t) => 0.2888353603591573,
sys.ca_nsr(t) => 1310.8215520357664,
sys.ca_jsr(t) => 1279.0031418789408,
sys.ca_ss(t) => 0.30018253161345193,
sys.ca_m(t) => 1.5784251172055905,
sys.adp_i(t) => 816.4949818252275,
sys.adp_m(t) => 181.6018607672394,
sys.nadh_m(t) => 1279.9207779954984,
sys.dpsi(t) => 145.86763201253336,
sys.sox_m(t) => 5.345242231016891e-6,
This notebook was generated using Literate.jl.