Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Standard procedures

  • Define a model function representing the right-hand-side (RHS) of the system.

    • Out-of-place form: f(u, p, t) where u is the state variable(s), p is the parameter(s), and t is the independent variable (usually time). The output is the right hand side (RHS) of the differential equation system.

    • In-place form: f!(du, u, p, t), where the output is saved to du. The rest is the same as the out of place form. The in-place form has potential performance benefits since it allocates less than the out-of-place (f(u, p, t)) counterpart.

    • Using ModelingToolkit.jl : define equations and build an ODE system.

  • Initial conditions (u0) for the state variable(s).

  • (Optional) define parameter(s) p.

  • Define a problem (e.g. ODEProblem) using the modeling function (f), initial conditions (u0), simulation time span (tspan == (tstart, tend)), and parameter(s) p.

  • Solve the problem by calling solve(prob).

Solve ODEs using OrdinaryDiffEq.jl

Documentation: https://docs.sciml.ai/DiffEqDocs/stable/

Single variable: Exponential decay model

The concentration of a decaying nuclear isotope could be described as an exponential decay:

ddtC(t)=λC(t)\frac{d}{dt}C(t) = - \lambda C(t)

State variable

  • C(t)C(t): The concentration of a decaying nuclear isotope.

Parameter

  • λ\lambda: The rate constant of decay. The half-life t12=ln2λt_{\frac{1}{2}} = \frac{ln2}{\lambda}

using OrdinaryDiffEq
using CairoMakie

The model function is the 3-argument out-of-place form, f(u, p, t).

decay(u, p, t) = p * u

p = -1.0            ## Rate of exponential decay
u0 = 1.0            ## Initial condition
tspan = (0.0, 2.0)  ## Start time and end time

prob = ODEProblem(decay, u0, tspan, p)
sol = solve(prob)
retcode: Success Interpolation: 3rd order Hermite t: 8-element Vector{Float64}: 0.0 0.10001999200479662 0.34208427066999536 0.6553980136343391 1.0312652525315806 1.4709405856363595 1.9659576669700232 2.0 u: 8-element Vector{Float64}: 1.0 0.9048193287657775 0.7102883621328676 0.5192354400036404 0.35655576576996556 0.2297097907863828 0.14002247272452764 0.1353360028400881

Solution at time t=1.0 (with interpolation)

sol(1.0)
0.3678796381978344

Time points

sol.t
8-element Vector{Float64}: 0.0 0.10001999200479662 0.34208427066999536 0.6553980136343391 1.0312652525315806 1.4709405856363595 1.9659576669700232 2.0

Solutions at corresponding time points

sol.u
8-element Vector{Float64}: 1.0 0.9048193287657775 0.7102883621328676 0.5192354400036404 0.35655576576996556 0.2297097907863828 0.14002247272452764 0.1353360028400881

Visualize the solution

fig = Figure()
ax = Axis(fig[1, 1],
    xlabel = "Time",
    ylabel = "Concentration",
    title = "Exponential Decay"
)
lines!(ax, sol, label = "C(t)")
axislegend(ax, position = :rt)
fig
Figure()

Three variables: The SIR model

The SIR model describes the spreading of an contagious disease can be described by the SIR model:

ddtS(t)=βS(t)I(t)ddtI(t)=βS(t)I(t)γI(t)ddtR(t)=γI(t)\begin{align} \frac{d}{dt}S(t) &= - \beta S(t)I(t) \\ \frac{d}{dt}I(t) &= \beta S(t)I(t) - \gamma I(t) \\ \frac{d}{dt}R(t) &= \gamma I(t) \end{align}

State variables

  • S(t)S(t) : the fraction of susceptible people

  • I(t)I(t) : the fraction of infectious people

  • R(t)R(t) : the fraction of recovered (or removed) people

Parameters

  • β\beta : the rate of infection when susceptible and infectious people meet

  • γ\gamma : the rate of recovery of infectious people

using OrdinaryDiffEq
using CairoMakie

SIR model (in-place form can save array allocations and thus faster)

function sir!(du, u, p, t)
    s, i, r = u
    β, γ = p
    v1 = β * s * i
    v2 = γ * i
    du[1] = -v1
    du[2] = v1 - v2
    du[3] = v2
    return nothing
end
sir! (generic function with 1 method)
p = (β=1.0, γ=0.3)
u0 = [0.99, 0.01, 0.00]
tspan = (0.0, 20.0)
prob = ODEProblem(sir!, u0, tspan, p)
sol = solve(prob)
retcode: Success Interpolation: 3rd order Hermite t: 17-element Vector{Float64}: 0.0 0.08921318693905476 0.3702862715172094 0.7984257132319627 1.3237271485666187 1.991841832691831 2.7923706947355837 3.754781614278828 4.901904318934307 6.260476636498209 7.7648912410433075 9.39040980993922 11.483861023017885 13.372369854616487 15.961357172044833 18.681426667664056 20.0 u: 17-element Vector{Vector{Float64}}: [0.99, 0.01, 0.0] [0.9890894703413342, 0.010634484617786016, 0.00027604504087978485] [0.9858331594901347, 0.012901496825852227, 0.0012653436840130785] [0.9795270529591532, 0.017282420996456258, 0.003190526044390597] [0.9689082167415561, 0.02463126703444545, 0.006460516223998508] [0.9490552312363142, 0.03827338797605378, 0.012671380787632141] [0.9118629475333939, 0.06347250098224964, 0.024664551484356558] [0.8398871089274511, 0.11078176031568547, 0.049331130756863524] [0.7075842068024722, 0.19166147882272844, 0.1007543143747994] [0.508146028721987, 0.29177419341470584, 0.20007977786330722] [0.31213222024413995, 0.3415879120018046, 0.34627986775405545] [0.18215683096365565, 0.3099983134156389, 0.5078448556207055] [0.10427205468919205, 0.22061114011133276, 0.6751168051994751] [0.07386737407725845, 0.14760143051851143, 0.7785311954042301] [0.05545028910907714, 0.07997076922865315, 0.8645789416622697] [0.047334990695892025, 0.04060565321383335, 0.9120593560902746] [0.04522885458929332, 0.029057416110814603, 0.925713729299892]

Visualize the solution

fig = Figure()
ax = Axis(fig[1, 1])
lines!(ax, 0..20, t-> sol(t)[1], label="S")
lines!(ax, 0..20, t-> sol(t)[2], label="I")
lines!(ax, 0..20, t-> sol(t)[3], label="R")
axislegend(ax, position = :rc)
fig
Figure()

Saving simulation results

using DataFrames
using CSV

df = DataFrame(sol)
CSV.write("sir.csv", df)
rm("sir.csv")

This notebook was generated using Literate.jl.