RIRR-DOX model description

Contents

RIRR-DOX model description#

TCA cycle rates#

Conservation relationship#

\[ \begin{align} \Sigma_{CAC} = [CIT] + [ISOC] + [\alpha KG] + [SCoA] + [SUC] + [FUM] + [MAL] + [OAA] \end{align} \]

Parameter

Value

Unit

Description

\(\Sigma_{CAC}\)

1.300

mM

Sum of TCA cycle intermediates

Citrate synthase (CS)#

\[ \begin{align} J_{CS} = \frac{k_{cat}^{CS} E_T^{CS} ([AcCoA] / K_m^{AcCoA})([OAA] / K_m^{OAA})}{(1+[AcCoA] / K_m^{AcCoA})(1+[OAA] / K_m^{OAA})} \end{align} \]

Parameter

Value

Unit

Description

\(k_{cat}^{CS}\)

0.23523

Hz

Catalytic constant

\(E_T^{CS}\)

0.4

mM

Enzyme concentration of CS

\(K_m^{AcCoA}\)

12.6

μM

Michaelis constant for AcCoA

\(K_m^{OAA}\)

0.64

μM

Michaelis constant for OAA

\([AcCoA]\)

0.1

mM

Acetyl CoA concentration

Aconitase (ACO)#

\[ J_{ACO} = k_f^{ACO} ([CIT] - [ISOC] / K_{eq}^{ACO}) \]

Parameter

Value

Unit

Description

\(k_f^{ACO}\)

0.1

Hz

Forward rate constant of ACO

\(K_{eq}^{ACO}\)

2.22

-

Equilibrium constant of ACO

Isocitrate dehydrogenase, NADH-producing (IDH3)#

\[\begin{split} \begin{align} J_{IDH3} &= \frac{k_{cat}^{IDH3} E_T^{IDH3} AB}{f_H AB + f_i B + f_a A + f_a f_i} \\ f_H & = 1 + \frac{[H^+]_m}{K_{H1}^{IDH3}} + \frac{K_{H2}^{IDH3}}{[H^+]_m} \\ A &= [NAD] / K_{NAD}^{IDH3} \\ B &= ([ISOC] / K_{ISOC}^{IDH3})^n_{IDH3} \\ f_a &= \frac{K_A^{IDH3}}{K_A^{IDH3} + [ADP]_m} \frac{K_{CA}^{IDH3}}{K_{CA}^{IDH3} + [Ca^{2+}]_m} \\ f_i &= 1 + \frac{[NADH]}{K_{NADH}^{IDH3}} \\ \end{align} \end{split}\]

Parameter

Value

Unit

Description

\(k_{cat}^{IDH3}\)

535

Hz

Rate constant of IDH3

\(E_T^{IDH3}\)

0.109

mM

Concentration of IDH3

\(K_{H1}^{IDH3}\)

1

nM

Ionization constant of IDH3

\(K_{H2}^{IDH3}\)

900

nM

Ionization constant of IDH3

\(K_{NAD}^{IDH3}\)

0.923

mM

Michaelis constant for NAD

\(K_{ISOC}^{IDH3}\)

1.520

mM

Michaelis constant for isocitrate

\(n_{IDH3}\)

2

-

Cooperativity for isocitrate

\(K_A^{IDH3}\)

0.62

mM

Activation constant by ADP

\(K_{CA}^{IDH3}\)

0.5

μM

Activation constant for calcium

\(K_{NADH}^{IDH3}\)

0.19

mM

Inhibition constant by NADH

Alpha-ketoglutarate dehydrogenase (KGDH)#

\[\begin{split} \begin{align} J_{KGDH} &= \frac{k_{cat}^{KGDH} E_T^{KGDH} AB}{f_H AB + f_a (A + B)} \\ f_H & = 1 + \frac{[H^+]_m}{K_{H1}^{KGDH}} + \frac{K_{H2}^{KGDH}}{[H^+]_m} \\ A &= [NAD] / K_{NAD}^{KGDH} \\ B &= ([\alpha KG] / K_{AKG}^{KGDH})^n_{KGDH} \\ f_a &= \frac{K_{MG}^{KGDH}}{K_{MG}^{KGDH} + [Mg^{2+}]_m} \frac{K_{CA}^{KGDH}}{K_{CA}^{KGDH} + [Ca^{2+}]_m} \\ \end{align} \end{split}\]

Parameter

Value

Unit

Description

\(k_{cat}^{KGDH}\)

17.9

Hz

Rate constant of KGDH

\(E_T^{KGDH}\)

0.5

mM

Concentration of KGDH

\(K_{H1}^{KGDH}\)

40

nM

Ionization constant of KGDH

\(K_{H2}^{KGDH}\)

70

nM

Ionization constant of KGDH

\(K_{NAD}^{KGDH}\)

38.7

mM

Michaelis constant for NAD

\(K_{AKG}^{KGDH}\)

30

mM

Michaelis constant for αKG

\(n_{KGDH}\)

1.2

-

Hill coefficient for αKG

\(K_{MG}^{KGDH}\)

30.8

μM

Activation constant for Mg

\(K_{CA}^{KGDH}\)

0.15

μM

Activation constant for Ca

Succinate-CoA ligase (SL)#

\[\begin{split} \begin{align} J_{SL} &= k_f^{SL} ([SCoA][ADP]_m[Pi]_m - [SUC][ATP]_m[CoA]/K_{eq}^{app}) \\ K_{eq}^{app} &= K_{eq}^{SL} \frac{P_{SUC}P_{ATP}}{P_{Pi}P_{ADP}} \\ \end{align} \end{split}\]

Parameter

Value

Unit

Description

\(k_f^{SL}\)

28.4

1Hz/mM²

Forward rate constant of SL

\(K_{eq}^{SL}\)

3.11

-

Equilibrium constant of SL

[CoA]

0.020

mM

Coenzyme A concentration

Succinate dehydrogenase (SDH)#

See OXPHOS part: complex II (Succinate dehydrogenase).

Fumarate hydratase (FH)#

\[ J_{FH} = k_f^{FH} ([FUM] - [MAL] / K_{eq}^{FH}) \]

Parameter

Value

Unit

Description

\(k_f^{FH}\)

8.3

Hz

Forward rate constant

\(K_{eq}^{FH}\)

1.0

-

Equilibrium constant

Malate dehydrogenase (MDH)#

\[\begin{split} \begin{align} J_{MDH} &= \frac{k_{cat}^{MDH} E_T^{MDH} AB f_a f_i}{(1+A)(1+B)} \\ A &= \frac{[MAL]}{K_{MAL}^{MDH}}\frac{K_{OAA}^{MDH}}{K_{OAA}^{MDH} + [OAA]} \\ B &= [NAD] / K_{NAD}^{MDH} \\ f_a &= k_{offset}^{MDH} + \left( 1 + \frac{[H^+]_m}{K_{H1}^{MDH}} (1 + \frac{[H^+]_m}{K_{H2}^{MDH}}) \right)^{-1} \\ f_i &= \left( 1 + \frac{K_{H3}^{MDH}}{[H^+]_m} (1 + \frac{K_{H4}^{MDH}}{[H^+]_m}) \right)^{2} \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(k_{cat}^{MDH}\)

125.9

Hz

Rate constant

\(E_T^{MDH}\)

154

μM

\(K_{H1}^{MDH}\)

11.31

nM

Ionization constant

\(K_{H2}^{MDH}\)

26.7

mM

Ionization constant

\(K_{H3}^{MDH}\)

6.68

pM

Ionization constant

\(K_{H4}^{MDH}\)

5.62

nM

Ionization constant

\(k_{offset}^{MDH}\)

0.0399

-

Offset of MDH pH activation factor

\(K_{NAD}^{MDH}\)

224.4

μM

Michaelis constant for NAD

\(K_{MAL}^{MDH}\)

1.493

mM

Michaelis constant for malate

\(K_{OAA}^{MDH}\)

31

μM

Inhibition constant for oxaloacetate

Aspartate aminotransferase (AAT)#

\[ \begin{align} J_{AAT} = k_f^{AAT} [OAA][GLU] \frac{k_{ASP}^{AAT} K_{eq}^{AAT}}{k_{ASP}^{AAT} K_{eq}^{AAT} + k_f[\alpha KG]} \end{align} \]

Parameter

Value

Units

Description

\(k_f^{AAT}\)

21.7

Hz/mM

Forward rate constant

\(k_{ASP}^{AAT}\)

0.0015

Hz

Rate constant of aspartate consumption

\(K_{eq}^{AAT}\)

6.6

-

Equilibrium constant

[GLU]

30

mM

Glutamate concentration

ODEs in the citric acid cycle#

\[\begin{split} \begin{align} \frac{d [ISOC]}{dt} &= J_{ACO} -J_{IDH3} -J_{IDH2} \\ \frac{d [\alpha KG]}{dt} &= J_{IDH3} + J_{IDH2} - J_{KGDH} + J_{AAT} \\ \frac{d [SCoA]}{dt} &= J_{KGDH} - J_{SL} \\ \frac{d [SUC]}{dt} &= J_{SL} - J_{SDH} \\ \frac{d [FUM]}{dt} &= J_{SDH} - J_{FH} \\ \frac{d [MAL]}{dt} &= J_{FH} - J_{MDH} \\ \frac{d [OAA]}{dt} & = J_{MDH} - J_{CS} - J_{AAT} \\ \end{align} \end{split}\]

Endoplasmic reticulum#

Ryanodine receptor (Jrel)#

\[\begin{split} \begin{align} P_{C1} &= 1 - P_{O1} - P_{O2} - P_{C2} \\ v_{o1c1} &= -k_a^-P_{O1} + k_a^+[Ca^{2+}]_{ss}^n P_{C1} \\ v_{o1o2} &= k_b^+ [Ca^{2+}]_{ss}^m_{RyR} P_{O1} - k_b^- P_{O2} \\ v_{o1c2} &= k_c^+ P_{O1} - k_c^- P_{C2} \\ \dot{P_{O1}} &= -v_{o1c1} - v_{o1o2} - v_{o1c2} \\ \dot{P_{O2}} &= v_{o1o2} \\ \dot{P_{C2}} &= v_{o1c2} \\ J_{rel} &= r_{ryr} (P_{O1} + P_{O2})([Ca^{2+}]_{JSR} - [Ca^{2+}]_{ss}) \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(r_{RyR}\)

3600

Hz

RyR flux channel constant

\(n_{RyR}\)

4

-

Cooperativity parameter

\(m_{RyR}\)

3

-

Cooperativity parameter

\(k_a^+\)

12.15

Hz/μM⁴

RyR rate constant

\(k_a^-\)

576

Hz

RyR rate constant

\(k_b^+\)

0.00405

Hz/μM³

RyR rate constant

\(k_b^-\)

1930

Hz

RyR rate constant

\(k_c^+\)

100

Hz

RyR rate constant

\(k_c^-\)

0.8

Hz

RyR rate constant

SERCA (Jup)#

Michaelis-Menten dependence of enzyme activity with respect to ATP and mixed-type inhibition of the enzyme by ADP. Reversible during diastole with low cytoplasmic calcium levels.

\[\begin{split} \begin{align} J_{up} &= \frac{V_{f}^{up}f_b-V_{r}^{up}r_b}{(1 + f_b + r_b)f_{ATP}^{SERCA}} \\ f_b &= \left( \frac{[Ca^{2+}]_i}{K_{fb}} \right)^{N_{fb}} \\ r_b &= \left( \frac{[Ca^{2+}]_{NSR}}{K_{rb}} \right)^{N_{rb}} \\ f_{ATP}^{SERCA} &= \frac{K_{m,up}^{ATP}}{[ATP]_i} ( \frac{[ADP]_i}{K_{i1, up}} + 1) + \frac{[ADP]_i}{K_{i2, up}} + 1 \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(V_{max, f}^{SERCA}\)

0.2989

Hz*mM

SERCA forward rate parameter

\(V_{max, b}^{SERCA}\)

0.3179

Hz*mM

SERCA reverse rate parameter

\(K_{f}^{SERCA}\)

0.24

μM

Forward Ca2+ half-saturation constant of SERCA

\(K_{r}^{SERCA}\)

1.64269

mM

Reverse Ca2+ half-saturation constant of SERCA

\(N_{f}^{SERCA}\)

1.4

-

Forward cooperativity constant of SERCA

\(N_{r}^{SERCA}\)

1.0

-

Reverse cooperativity constant of SERCA

\(K_{ATP}^{SERCA}\)

10

μM

ATP half-saturation constant for SERCA

\(K_{ADP1}^{SERCA}\)

140

μM

ADP first inhibition constant for SERCA

\(K_{ADP2}^{SERCA}\)

5.1

mM

ADP second inhibition constant for SERCA

Sarcoplasmic ion currents#

GHK current equation

\[ \begin{align} \Phi_s(P_s, z_s, V_m, [S]_i, [S]_o) := P_sz^2_s\frac{V_mF^2}{RT}\frac{[S]_i - [S]_o\exp(-z_sV_mF/RT)}{1-\exp(-z_sV_mF/RT)} \end{align} \]

Time-dependent delayed rectifier potassium current (IK)#

\[\begin{split} \begin{align} I_K &= \bar G_K X_1 X_K^2 (V - E_K) \\ E_K &= \frac{RT}{F} \ln \frac{[K^+]_o + P_{Na,K}[Na^+]_o}{ [K^+]_i + P_{Na,K}[Na^+]_i} \\ \bar G_K &= 0.282 (mS/cm^2)\sqrt{[K^+]_o /5.4mM} \\ X_1 &= (1+ e^{(V_m-40)/40})^{-1} \\ \frac{dX_k}{dt} &= \alpha_X - X_k (\alpha_X + \beta_X) \\ \alpha_X &= \frac{V_m+30}{1 - e^{-0.148(V_m+30)}} * 0.0719Hz \\ \beta_X &= \frac{V_m+30}{e^{0.0687(V_m+30)} -1} * 0.131Hz \\ \end{align} \end{split}\]

Time-independent potassium current (IK1)#

\[\begin{split} \begin{align} \Delta V &= V_m - E_{K1} \\ I_{K1} &= \bar G_{K1}K_{1 \infty}\Delta V \\ E_{K1} &= \frac{RT}{F} \ln \frac{[K^+]_o}{[K^+]_i} \\ \bar G_{K1} &= 0.748(mS/cm^2)\sqrt{[K^+]_o / 5.4mM} \\ K_{1 \infty} &= \frac{\alpha_{K_1}}{\alpha_{K_1} + \beta_{K_1}} \\ \alpha_{K_1} &= \frac{1.02}{1 + e^{0.2385(\Delta V -59.215)}} * \text{kHz} \\ \beta_{K_1} &= \frac{0.4912e^{0.28032(\Delta V + 5.476)} + e^{0.06175(\Delta V -594.31)}}{1 + e^{-0.5143(\Delta V + 4.753)}} * \text{kHz} \end{align} \end{split}\]

Plateau potassium current (IKp)#

\[\begin{split} \begin{align} E_{Kp} &= \frac{RT}{F} \ln \frac{[K^+]_o}{[K^+]_i} \\ I_{Kp} &= \frac{\bar G_{Kp} (V - E_{Kp})}{1 + e^{(7.488-V_m) / 5.98}} \\ \end{align} \end{split}\]

Fast Na current (INa)#

\[\begin{split} \begin{align} I_{Na} &= \bar G_{Na} m_{Na}^{3} h_{Na} j_{Na} (V_m-E_{Na}) \\ E_{Na} &= \frac{RT}{F} \ln \frac{[Na^{+}]_o}{[Na^{+}]_i} \\ \frac{dm_{Na}}{dt} &= \alpha_{m} - m_{Na}(\alpha_{m} + \beta_{m}) \\ \frac{dh_{Na}}{dt} &= \alpha_{h} - h_{Na}(\alpha_{h} + \beta_{h}) \\ \frac{dj_{Na}}{dt} &= \alpha_{j} - m_{Na}(\alpha_{j} + \beta_{j}) \\ \alpha_{m} &= 0.32kHz \frac{V_m + 47.13}{1 - e^{-0.1(V_m+47.13)}} \\ \beta_{m} &= 0.08kHz \times e^{-V_m / 11} \\ \\ For \ V_m & \ge -40mV \\ \alpha_{h} &= \alpha_{j} = 0 \\ \beta_{h} &= (0.13 ms (1+e^{-(V_m+10.66)/11.1}))^{-1} \\ \beta_{j} &= 0.3kHz\frac{e^{-2.535 \times 10^{-7}V_m}}{1 + e^{-0.1(V_m + 32)}} \\ \\ For \ V_m & < -40mV \\ \alpha_{h} &= 0.135kHz * e^{-(V_m+80)/6.8} \\ \alpha_{j} &= (-127140e^{0.2444 V_m}-3.474 \times 10^{-5}e^{-0.04391 V_m})\frac{V_m + 37.78}{1+e^{0.311( V_m +79.23)}} \times \text{kHz} \\ \beta_{h} &= (3.56e^{0.079 V_m} + 3.1 \times 10^{5}e^{0.35 V_m}) \times \text{kHz} \\ \beta_{j} &= \frac{0.1212e^{-0.01052 V_m}}{1+e^{-0.1378(V_m + 40.14)}} \times \text{kHz} \\ \end{align} \end{split}\]

Sodium-calcium exchanger current (INaCa)#

\[\begin{split} \begin{align} I_{NaCa} &= k_{NaCa} \cdot f_{Nao } \cdot f_{Cao }\frac{exp(V_mF/RT)\phi_{Na}^3 - \phi_{Ca}}{exp((1 - \eta) V_mF/RT ) + k_{sat}} \\ f_{Nao} &= \frac{([Na^+]_o)^3}{([Na^+]_o)^3 + (K_{M,Na}^{NaCa})^3} \\ f_{Cao} &= \frac{[Ca^+]_o}{[Ca^+]_o + K_{M,Ca}^{NaCa}} \\ \phi_{Na} &= \frac{[Na^+]_i}{ [Na^+]_o} \\ \phi_{Ca} &= \frac{[Ca^{2+}]_i}{[Ca^{2+}]_o} \\ \end{align} \end{split}\]

Background calcium (\(I_{Ca,b}\)) and sodium currents (\(I_{Na,b}\))#

\[\begin{split} \begin{align} I_{Ca,b} &= \bar G_{Ca,b} (V_m - \frac{RT}{2F} \ln \frac{[Ca^{2+}]_o}{[Ca^{2+}]_i}) \\ I_{Na,b} &= \bar G_{Na,b} (V_m - \frac{RT}{F} \ln \frac{[Na^{+}]_o}{[Na^{+}]_i}) \\ \end{align} \end{split}\]

Non-specific calcium-activated current (InsCa)#

\[\begin{split} \begin{align} f_{Ca} &= \frac{([Ca^{2+}]_i)^3}{([Ca^{2+}]_i)^3 + (K_{m}^{nsCa})^3}\\ I_{nsNa} &= 0.75 \cdot f_{Ca} \cdot \Phi_{Na}(P_{nsNa}, z_{Na}, V_m, [Na^+]_i, [Na^+]_o) \\ I_{nsK} &= 0.75 \cdot f_{Ca} \cdot \Phi_{K}(P_{nsK}, z_{K}, V_m, [K^+]_i, [K^+]_o) \\ \end{align} \end{split}\]

Sodium-potassium ATPase current (INaK)#

The Na+/K+ ATPase activity depends on the ATP concentration, as well as the competitive inhibition by ADP.

\[\begin{split} \begin{align} I_{NaK} &= \bar I_{NaK} \cdot f_{ATP} \cdot f_{Na} \cdot f_{K} \cdot f_{NaK} \\ \sigma &= \frac{e^{[Na^+]_o / 67.3mM}-1}{7} \\ f_{NaK} &= (1 + 0.1245 \cdot \exp(-0.1V_m F / RT) + 0.0365 \sigma \cdot \exp(-V_m F / RT))^{-1} \\ f_{Na} &= \frac{([Na^+]_i)^{1.5}}{([Na^+]_i)^{1.5} + (K_{m, Na_i})^{1.5}} \\ f_{K} &= \frac{[K^+]_o}{[K^+]_o + K_{m, K_o}} \\ f_{ATP} &= \frac{[ATP]_i}{[ATP]_i + K_{M,ATP}^{NaK} / f_{ADP}} \\ f_{ADP} &= \frac{K_{i,ADP}^{NaK}}{K_{i,ADP}^{NaK} + [ADP]_i} \\ \end{align} \end{split}\]

L-type Ca current (ICa & ICaK)#

“Common pool” subspace calcium model.

\[\begin{split} \begin{align} \alpha &= 0.4 e^{(V_m+2) / 10} \\ \beta &= 0.4 e^{-(V_m+2) / 13} \\ \alpha^\prime &= a \alpha \\ \beta^\prime &= \beta / b \\ \gamma &= \gamma_0 [Ca^{2+}]_{ss} \\ C_0 &= 1 - C_0 - C_1 - C_2 - C_3 - C_4 - O - C_{Ca0} - C_{Ca1} - C_{Ca2} - C_{Ca3} - C_{Ca4} \\ v_{01} &= 4\alpha C_0 - \beta C_1 \\ v_{12} &= 3\alpha C_1 - 2\beta C_2 \\ v_{23} &= 2\alpha C_2 - 3\beta C_3 \\ v_{34} &= \alpha C_3 - 4\beta C_4 \\ v_{45} &= f C_4 - g O \\ v_{67} &= 4\alpha^\prime C_{Ca0} - \beta^\prime C_{Ca1} \\ v_{78} &= 3\alpha^\prime C_{Ca1} - 2\beta^\prime C_{Ca2} \\ v_{89} &= 2\alpha^\prime C_{Ca2} - 3\beta^\prime C_{Ca3} \\ v_{910} &= \alpha^\prime C_{Ca3} - 4\beta^\prime C_{Ca4} \\ v_{06} &= \gamma C_0 - \omega C_{Ca0} \\ v_{17} &= a \gamma C_1 - \omega C_{Ca1} / b \\ v_{28} &= a^2 \gamma C_2 - \omega C_{Ca2} / b^2 \\ v_{39} &= a^3 \gamma C_3 - \omega C_{Ca3} / b^3 \\ v_{410} &= a^4 \gamma C_4 - \omega C_{Ca4} / b^4 \\ \end{align} \end{split}\]
\[\begin{split} \begin{align} \frac{dC_0}{dt} &= -v_{01} -v_{06} \\ \frac{dC_1}{dt} &= v_{01} - v_{12} - v_{17} \\ \frac{dC_2}{dt} &= v_{12} - v_{23} - v_{28} \\ \frac{dC_3}{dt} &= v_{23} - v_{34} - v_{34} \\ \frac{dC_4}{dt} &= v_{34} - v_{45} - v_{410} \\ \frac{dO}{dt} &= v_{45} \\ \frac{dC_{Ca0}}{dt} &= v_{06} - v_{67} \\ \frac{dC_{Ca1}}{dt} &= v_{17} + v_{67} - v_{78} \\ \frac{dC_{Ca2}}{dt} &= v_{28} + v_{78} - v_{89} \\ \frac{dC_{Ca3}}{dt} &= v_{39} + v_{89} - v_{910} \\ I_{Ca}^{max} &= \Phi_{Ca}(P_{Ca}, z_{Ca}, V_m, 0.001, 0.341[Ca^{2+}]_o) \\ I_{Ca} &= 6 I_{Ca}^{max} \cdot y_{Ca} \cdot O \\ I_{Ca,K} &= y_{Ca} \cdot O \cdot \Phi_{Ca}(P_{K}, z_{K}, V_m, [K^+]_i, [K^+]_o) \\ P_{K} &= P_{K}^{max} \frac{I_{Ca}^{half}}{I_{Ca}^{half} + I_{Ca}^{max}} \\ y_\infty &= \frac{1}{1 + e^{(V_m + 55) / 7.5}} + \frac{0.5}{1 + e^{(-V_m + 21) / 6}} \\ \tau_y &= 20ms + \frac{600ms}{1 + e^{(V_m + 30) / 9.5}} \\ \frac{dy_{Ca}}{dt} &= \frac{y_\infty - y_{Ca}}{\tau_y} \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(A\)

2

Mode transition parameter

\(B\)

2

Mode transition parameter

\(\gamma_0\)

187.5

Hz/μM

Mode transition parameter

\(\omega\)

10

Hz

Mode transition parameter

\(f\)

300

Hz

Transition rate into open state

\(g\)

2000

Hz

Transition rate into open state

\(P_{Ca}^{LCC}\)

\(1.24 \cdot 10^{-3}\)

cm/s

L-type Ca2+ channel permeability to Ca2+

\(P_{K}^{LCC}\)

\(1.11 \cdot 10^{-11}\)

cm/s

L-type Ca2+ channel permeability to K+

\(I_{Ca, half}\)

\(-0.4583\)

\(\mu A / cm^{2}\)

ICa level that reduces equation Pk by half

Plasma membrane calcium ATPase (PMCA) current (IpCa)#

Modified rate expression incorporating the ATP-dependence of pump activity. Plasma membrane calcium ATPase (PMCA) rate exhibits two different K0.5 values for ATP.

\[\begin{split} \begin{align} I_{pCa} &= I_{max}^{PMCA} \times \frac{[Ca^{2+}]_i}{[Ca^{2+}]_i + K_{M, Ca}^{PMCA}} \times f_{ATP} \\ f_{ATP} &= \frac{[ATP]_i}{[ATP]_i + K_{M2,ATP}^{PMCA}} + \frac{[ATP]_i}{[ATP]_i + K_{M1,ATP}^{PMCA} / f{ADP}} \\ f_{ADP} &= \frac{K_{i,ADP}^{PMCA}}{K_{i,ADP}^{PMCA} + [ADP]_i} \\ \end{align} \end{split}\]

Parameter

Value

Units

Description

\(I_{max}^{PMCA}\)

\(0.575\)

\(\mu A/cm^2\)

Maximum sarcolemmal Ca2+ pump current

\(K_{Ca}^{PMCA}\)

\(0.5\)

\(uM\)

Ca2+ half-saturation constant for sarcolemmal Ca2+ pump

\(K_{ATP1}^{PMCA}\)

\(0.012\)

\(mM\)

First ATP half-saturation constant for sarcolemmal Ca2+ pump

\(K_{ATP2}^{PMCA}\)

\(0.23\)

\(mM\)

Second ATP half-saturation constant for sarcolemmal Ca2+ pump

\(K_{ADP}^{PMCA}\)

\(1.0\)

\(mM\)

ADP inhibition constant for sarcolemmal Ca2+ pump

Electrophysiology ODEs#

\[\begin{split} \begin{align} \frac{d[Na^+]_i}{dt} &= -(I_{Na} + 3I_{NaCa} + 3I_{NaK})\frac{A_{cap}}{V_{myo}F} + (V_{NHE} - 3V_{NaCa}) \frac{V_{mito}}{V_{myo}} \\ \frac{d[K^+]_i}{dt} &= -(I_{Ks} + I_{Kr} + I_{K1} + I_{Kp} + I_{Ca,K}-2I_{NaK})\frac{A_{cap}}{V_{myo}F} \\ C_m\frac{dV_m}{dt} &= -(I_{Na} + I_{CaL} + I_{Kr} + I_{Ks} + I_{K1} + I_{Kp} + I_{NaCa} + I_{NaK} + I_{pCa} + I_{Ca, b} + I_{K_{ATP}} + I_{stim}) \\ β_i &= \frac{(K_m^{CMDN} + [Ca^{2+}]_i)^2}{ (K_m^{CMDN} + [Ca^{2+}]_i)^2 + K_m^{CMDN} \cdot [CMDN]_{tot}} \\ β_{SR} &= \frac{(K_m^{CSQN} + [Ca^{2+}]_{SR})^2}{(K_m^{CSQN} + [Ca^{2+}]_{SR})^2 + K_m^{CSQN} \cdot [CSQN]_{tot}} \\ \frac{d[Ca^{2+}]_i}{dt} &= \beta_i(J_{xfer}\frac{V_{ss}}{V_{myo}} - J_{up} - J_{trpn} - (I_{Ca,b} -2I_{NaCa} + I_{pCa})\frac{A_{cap}}{2V_{myo}F} + (V_{NaCa} - V_{uni})\frac{V_{mito}}{V_{myo}}) \\ \frac{d[Ca^{2+}]_{SR}}{dt} &= \beta_{SR}(J_{up}\frac{V_{myo}}{V_{SR}} - J_{rel}\frac{V_{ss}}{V_{SR}}) \\ \end{align} \end{split}\]

Symbol

Value

Units

Description

\(G_{Na}\)

\(12.8\)

\(mS/cm^2\)

Maximal Na channel conductance

\(G_{Kp}\)

\(0.00828\)

\(mS/cm^2\)

Maximal plateau K channel conductance

\(G_{K,0}\)

\(0.282\)

\(mS/cm^2\)

IK conductance

\(G_{K1,0}\)

\(0.748\)

\(mS/cm^2\)

IK1 conductance

\(P_{NaK}\)

\(0.01833\)

Na+ permeability ratio of K+ channel

\(K_{NaCa}\)

\(9000\)

\(\mu A/cm^2\)

NCX current

\(K_{Na}^{NCX}\)

\(87.5\)

\(mM\)

Dissociation constant of sodium for NCX

\(K_{Ca}^{NCX}\)

\(1.38\)

\(mM\)

Dissociation constant of calcium for NCX

\(K_{sat}^{NCX}\)

\(0.1\)

NCX saturation factor at negative potentials

\(\eta^{NCX}\)

\(0.35\)

Voltage dependence of NCX

\(P_{ns,Na}\)

\(1.75 \cdot 10^{-7}\)

\(cm/s\)

Nonspecific channel current Na permeability

\(P_{ns,K}\)

\(0\)

\(cm/s\)

Nonspecific channel current K permeability

\(K_{ca}^{ns}\)

\(1.2\)

\(\mu M\)

Ca2+ half-saturation constant for nonspecific current

\(G_{Ca,b}\)

\(0.003217\)

\(mS/cm^2\)

Maximum background current Ca2+ conductance

\(G_{Na,b}\)

\(0.003217\)

\(mS/cm^2\)

Maximum background current Na+ conductance

\(\tau_{tr}\)

\(574.7\)

Hz

Time constant for transfer from subspace to myoplasm

\(\tau_{xfer}\)

\(9090\)

Hz

Time constant for transfer from NSR to JSR

\(K_{m}^{CMDN}\)

\(2.38\)

\(\mu M\)

Ca2+ half saturation constant for calmodulin

\(K_{m}^{CSQN}\)

\(800\)

\(\mu M\)

Ca2+ half saturation constant for calsequestrin

\(\Sigma[HTRPN]\)

\(140\)

\(\mu M\)

Total troponin high-affinity sites

\(\Sigma[LTRPN]\)

\(70\)

\(\mu M\)

Total troponin low-affinity sites

\(\Sigma[CMDN]\)

\(50\)

\(\mu M\)

Total myoplasmic calmodulin concentration

\(\Sigma[CQSN]\)

\(15\)

\(mM\)

Total NSR calsequestrin concentration

Force generation#

The rate of ATP hydrolysis associated with force generation through actomyosin ATPase depends explicitly on both ATP and ADP. [1]

\[\begin{split} \begin{align} f_{01} &= 3f_{XB} \\ f_{12} &= 10f_{XB} \\ f_{23} &= 7f_{XB} \\ g_{01} &= g_{XB}^{min} \\ g_{12} &= 2g_{XB}^{min} \\ g_{23} &= 3g_{XB}^{min} \\ g_{01,SL} &= \phi \cdot g_{01} \\ g_{12,SL} &= \phi \cdot g_{12} \\ g_{23,SL} &= \phi \cdot g_{23} \\ g_{01,SL, off} &= \phi \cdot g_{off} \\ \phi &= 1 + \frac{2.3-SL}{(2.3-1.7)^{1.6}} \\ K_{Ca}^{trop} &= \frac{k^-_{ltrpn}}{k^+_{ltrpn}} \\ K_{1/2}^{trop} &= \left( 1 + \frac{K_{Ca}^{trop}}{1.7 \cdot 10^{-3} - 0.8 \cdot 10^{-3}\frac{(SL-1.7)}{0.6}} \right)^{-1} \\ N_{trop} &= 3.5 \cdot SL - 2.0 \\ k_{np}^{trop} &= k_{pn}^{trop} \left( \frac{[LTRPNCa]}{K_{1/2}^{trop}[LTRPN]_{tot}} \right) ^{N_{trop}} \\ \Sigma PATHS &= g_{01}g_{12}g_{23} + f_{01}g_{12}g_{23} + f_{01}f_{12}g_{23} + f_{01}f_{12}f_{23} \\ P1_{max} &= \frac{f_{01}g_{12}g_{23}}{\Sigma PATHS} \\ P2_{max} &= \frac{f_{01}f_{12}g_{23}}{\Sigma PATHS} \\ P3_{max} &= \frac{f_{01}f_{12}f_{23}}{\Sigma PATHS} \\ Force &= \zeta \frac{[P_1] + 2[P_2] + 3[P_3] + [N_1]}{P1_{max} + 2P2_{max} + 3P3_{max}} \\ Force_{norm} &= \frac{[P_1] + [P_2] + [P_3] + [N_1]}{P1_{max} + P2_{max} + P3_{max}} \\ \end{align} \end{split}\]
\[\begin{split} \begin{align} v_{01} &= f_{01} [P_0] - g_{01(SL)} [P_1] \\ v_{12} &= f_{12} [P_1] - g_{21(SL)} [P_2] \\ v_{23} &= f_{23} [P_2] - g_{23(SL)} [P_3] \\ v_{04} &= k_{pn}^{trop} [P_0] - k_{np}^{trop} [N_0] \\ [N_0] &= 1 - [P_0] - [P_1] - [P_2] - [P_3] - [N_1] \\ v_{15} &= k_{pn}^{trop} [P_1] - k_{np}^{trop} [N_1] \\ v_{54} &= g_{01,off} [N_1] \\ [HTRPN] &= [HTRPN]_{tot} - [HTRPNCa] \\ [LTRPN] &= [LTRPN]_{tot} - [LTRPNCa] \\ f_{ATP}^{AM} &= \frac{[ATP]_i}{[ATP]_i + K_{m,AM}^{ATP}/f_{ADP}^{AM} } \\ f_{ADP}^{AM} &= \frac{K_{i,AM}^{ADP}}{[ADP]_i + K_{i,AM}^{ADP}} \\ V_{AM} &= V_{max}^{AM} \cdot f_{ATP}^{AM} \cdot \frac{f_{01}[P_0] + f_{12}[P_1] + f_{23}[P_2]}{f_{01} + f_{12} + f_{23}} \\ J_{trpn} &= \frac{d[HTRPNCa]}{dt} + \frac{d[LTRPNCa]}{dt} \\ \frac{d[HTRPNCa]}{dt} &= k^{+}_{htrpn}[Ca^{2+}]_i[HTRPN] - k^{-}_{htrpn}[HTRPNCa] \\ \frac{d[LTRPNCa]}{dt} &= k^{+}_{ltrpn}[Ca^{2+}]_i[LTRPN] - k^{-}_{ltrpn}(1-\frac{2}{3}Force_{norm})[LTRPNCa] \\ \frac{d[P_0]}{dt} &= - v_{01} - v_{04} \\ \frac{d[P_1]}{dt} &= v_{01} - v_{12} - v_{15} \\ \frac{d[P_2]}{dt} &= v_{12} - v_{23} \\ \frac{d[P_3]}{dt} &= v_{23} \\ \frac{d[N_1]}{dt} &= v_{15} - v_{54} \\ \end{align} \end{split}\]

Symbol

Value

Units

Description

\(k_{pn}^{trop}\)

\(40\)

\(\text{Hz}\)

Transition rate from tropomyosin permissive to non-permissive

\(\text{SL}\)

\(2.15\)

\(\mu \text{m}\)

Sarcomere length

\(f_{XB}\)

\(50\)

\(\text{Hz}\)

Transition rate from weak to strong crossbridge

\(g_{XB}^{min}\)

\(100\)

\(\text{Hz}\)

Minimum transition rate from strong to weak crossbridge

\(\zeta\)

\(0.1\)

\(\text{N/mm}^2\)

Conversion factor normalizing to physiological force

\(V_{AM}^{max}\)

\(7.2\)

\(\text{mM/s}\)

Conversion factor normalizing to physiological force

\(K_{ATP}^{AM}\)

\(0.03\)

\(\text{mM}\)

ATP half-saturation constant of AM ATPase

\(K_{ADP}^{AM}\)

\(0.26\)

\(\text{mM}\)

ADP inhibition constant of AM ATPase

\(h_{trpn}^{+}\)

\(100000\)

\(\text{Hz/mM}\)

Ca2+ on-rate for troponin high-affinity sites

\(h_{trpn}^{-}\)

\(0.33\)

\(\text{Hz}\)

Ca2+ off-rate for troponin high-affinity sites

\(l_{trpn}^{+}\)

\(100000\)

\(\text{Hz/mM}\)

Ca2+ on-rate for troponin low-affinity sites

\(l_{trpn}^{-}\)

\(40\)

\(\text{Hz}\)

Ca2+ off-rate for troponin low-affinity sites

OXPHOS#

Complex I#

Assuming single electron transfer for each redox reaction.

\[\begin{split} \begin{align} \nu &= \exp((\Delta\Psi_m - \Delta\Psi_B) F/ RT) \\ a_{12} &= k_{12} ([H^+]_m)^2 \\ a_{21} &= k_{21} \\ a_{65} &= k_{65} ([H^+]_i)^2 \\ a_{56} &= k_{56} \\ a_{61} &= k_{61} / \nu \\ a_{16} &= k_{16} \nu \\ a_{23} &= k_{23} \sqrt{[NADH]} \\ a_{32} &= k_{32} \\ a_{34} &= k_{34} \\ a_{43} &= k_{43} \sqrt{[NAD^+]} \\ a_{47} &= C1_{inhib} \cdot K_{47} \sqrt{[Q_n][H^+]_m} \\ a_{74} &= k_{74} \\ a_{57} &= C1_{inhib} \cdot K_{57} \sqrt{[QH_2]} \\ a_{75} &= k_{75} \\ k_{42}^\prime &= k_{42} \\ a_{42} &= k_{42}^\prime [O_2] \\ K_{eq}^{ROS} &= \exp((E_{FMN} - E_{sox}) F / RT) \\ a_{24} &= a_{42} K_{eq}^{ROS} [O_2^{ \cdot -}]_m \\ a_{25} &= a_{52} = 0 \\ \end{align} \end{split}\]
\[\begin{split} \begin{align} e_{1} &= a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{57} \cdot a_{61} \cdot a_{74} \\ &+ a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{57} \cdot a_{61} \cdot a_{74} + a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{21} \cdot a_{32} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{57} \cdot a_{61} \cdot a_{74} \\ &+ a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{21} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ e_{2} &= a_{12} \cdot a_{32} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{32} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{32} \cdot a_{42} \cdot a_{57} \cdot a_{61} \cdot a_{74} \\ &+ a_{12} \cdot a_{32} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{12} \cdot a_{32} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{32} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{12} \cdot a_{32} \cdot a_{43} \cdot a_{57} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{32} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{12} \cdot a_{32} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{12} \cdot a_{34} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{34} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{34} \cdot a_{42} \cdot a_{57} \cdot a_{61} \cdot a_{74} \\ &+ a_{12} \cdot a_{34} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{12} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{16} \cdot a_{32} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} \\ &+ a_{16} \cdot a_{32} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{34} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} \\ e_{3} &= a_{12} \cdot a_{23} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{23} \cdot a_{42} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{23} \cdot a_{42} \cdot a_{57} \cdot a_{61} \cdot a_{74} \\ &+ a_{12} \cdot a_{23} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{12} \cdot a_{23} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{23} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{12} \cdot a_{23} \cdot a_{43} \cdot a_{57} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{23} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{12} \cdot a_{23} \cdot a_{47} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{12} \cdot a_{24} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{24} \cdot a_{43} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{24} \cdot a_{43} \cdot a_{57} \cdot a_{61} \cdot a_{74} \\ &+ a_{12} \cdot a_{24} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{21} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{23} \cdot a_{42} \cdot a_{57} \cdot a_{65} \cdot a_{74} \\ &+ a_{16} \cdot a_{23} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{24} \cdot a_{43} \cdot a_{57} \cdot a_{65} \cdot a_{74} \\ e_{4} &= a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{57} \cdot a_{61} \cdot a_{74} \\ &+ a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{56} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{56} \cdot a_{61} \cdot a_{75} \\ &+ a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{57} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{56} \cdot a_{61} \cdot a_{74} \\ &+ a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{56} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{57} \cdot a_{61} \cdot a_{74} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{57} \cdot a_{65} \cdot a_{74} \\ &+ a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{23} \cdot a_{34} \cdot a_{57} \cdot a_{65} \cdot a_{74} \\ &+ a_{16} \cdot a_{24} \cdot a_{32} \cdot a_{57} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{24} \cdot a_{34} \cdot a_{57} \cdot a_{65} \cdot a_{74} \\ e_{5} &= a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{65} \cdot a_{75} + a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{61} \cdot a_{75} \\ &+ a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{65} \cdot a_{75} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{61} \cdot a_{75} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{65} \cdot a_{75} \\ &+ a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{65} \cdot a_{74} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{65} \cdot a_{75} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{65} \cdot a_{74} \\ &+ a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{65} \cdot a_{75} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{47} \cdot a_{65} \cdot a_{75} + a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{65} \cdot a_{74} \\ &+ a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{65} \cdot a_{75} + a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{47} \cdot a_{65} \cdot a_{75} + a_{16} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{65} \cdot a_{75} \\ &+ a_{16} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{65} \cdot a_{75} + a_{16} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{65} \cdot a_{75} \\ e_{6} &= a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{75} + a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{56} \cdot a_{75} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{75} \\ &+ a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{56} \cdot a_{74} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{56} \cdot a_{75} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{57} \cdot a_{74} \\ &+ a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{56} \cdot a_{74} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{56} \cdot a_{75} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{57} \cdot a_{74} \\ &+ a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{47} \cdot a_{56} \cdot a_{75} + a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{56} \cdot a_{74} + a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{56} \cdot a_{75} \\ &+ a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{42} \cdot a_{57} \cdot a_{74} + a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{75} + a_{16} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{75} \\ &+ a_{16} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{56} \cdot a_{75} + a_{16} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{75} \\ e_{7} &= a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{61} + a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{57} \cdot a_{61} + a_{12} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{57} \cdot a_{65} \\ &+ a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{56} \cdot a_{61} + a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{57} \cdot a_{61} + a_{12} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{57} \cdot a_{65} \\ &+ a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{56} \cdot a_{61} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{57} \cdot a_{61} + a_{12} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{57} \cdot a_{65} \\ &+ a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{42} \cdot a_{57} \cdot a_{65} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{43} \cdot a_{57} \cdot a_{65} + a_{16} \cdot a_{21} \cdot a_{32} \cdot a_{47} \cdot a_{57} \cdot a_{65} \\ &+ a_{16} \cdot a_{21}choco \cdot a_{34} \cdot a_{42} \cdot a_{57} \cdot a_{65} + a_{16} \cdot a_{21} \cdot a_{34} \cdot a_{47} \cdot a_{57} \cdot a_{65} + a_{16} \cdot a_{23} \cdot a_{34} \cdot a_{47} \cdot a_{57} \cdot a_{65} \\ &+ a_{16} \cdot a_{24} \cdot a_{32} \cdot a_{47} \cdot a_{57} \cdot a_{65} + a_{16} \cdot a_{24} \cdot a_{34} \cdot a_{47} \cdot a_{57} \cdot a_{65} \\ \end{align} \end{split}\]
\[\begin{split} \begin{align} Δ &= e_{1} + e_{2} + e_{3} + e_{4} + e_{5} + e_{6} + e_{7} \\ \rho_{C1}^\prime &= \rho_{C1} \cdot mt_{prot} / \Delta \\ J_{Hres}^{C1} &= 2\rho_{C1}^\prime (e_{6}a_{61} - e_{1}a_{16}) \\ J_{Q}^{C1} &= 0.5\rho_{C1}^\prime (e_{4}a_{47} - e_{7}a_{74}) \\ J_{NADH}^{C1} &= 0.5\rho_{C1}^\prime (e_{3}a_{34} - e_{4}a_{43}) \\ J_{ROS}^{C1} &= \rho_{C1}^\prime (e_{4}a_{42} - e_{2}a_{24}) \\ \end{align} \end{split}\]

Parameter

Value

Units

Desc.

\(\rho_{C1}\)

5

mM

Concentration of complex I
(Adjustable)

\(\Delta\Psi_B\)

50

mV

Phase boundary potential

\(k_{12}\)

6.3396E11

\(Hz/mM^2\)

\(k_{21}\)

5

Hz

\(k_{56}\)

100

Hz

\(k_{65}\)

2.5119E13

\(Hz/mM^2\)

\(k_{61}\)

1E7

Hz

\(k_{16}\)

130

Hz

\(k_{23}\)

3886.7

\(Hz/mM^{1/2}\)

\(k_{32}\)

9.1295E6

Hz

\(k_{34}\)

639.1364

Hz

\(k_{43}\)

3.2882

\(Hz/mM^{1/2}\)

\(k_{47}\)

1.5962E7

Hz/mM

\(k_{74}\)

65.2227

Hz

\(k_{75}\)

24615

Hz

\(k_{57}\)

1166.7

\(Hz/mM^{1/2}\)

\(k_{42}\)

6.0318

Hz/mM

\(E_{FMN}\)

-375

mV

Midpoint potential of flavin mononucleotide

\(E_{sox}\)

-150

mV

Midpoint potential of superoxide

Complex II (Succinate dehydrogenase)#

\[\begin{split} \begin{align} f_Q &= \frac{[Q]_n}{[Q]_n + [QH_2]_n} \\ f_{OAA} &= \frac{K_{i, OAA}}{[OAA] + K_{i, OAA}} \\ f_{FUM} &= \frac{K_{i, FUM}}{[FUM] + K_{i, FUM}} \\ f_{SUC} &= \frac{[SUC]}{[SUC] + K_{m, SUC} / f_{OAA} / f_{FUM}} \\ J_{SDH} &= V_{SDH} C2_{inhib} f_{SUC} \frac{f_Q}{f_Q + K_{m, Q}} \\ J_{c2} &= J_{SDH} \\ \end{align} \end{split}\]

Parameter

Value

Units

Desc.

\(V_{SDH}\)

250

mM / minute

Maximum rate of SDH

\(K_{i, OAA}\)

0.150

mM

Inhibition constant for oxaloacetate

\(K_{m, Q}\)

0.6

-

Michaelis constant for CoQ

\(K_{i, FUC}\)

0.150

mM

Inhibition constant for fumarate

\(K_{m, SUC}\)

0.6

-

Michaelis constant for succinate

Complex III#

\[\begin{split} \begin{align} f_{hi} & = [H^+]_{i} / 10^{-7}M \\ v_{1} &= v_{Q}^{C1} + v_{Q}^{C2} \\ v_2 &= k_d([QH_2]_{n} - [QH_2]_{p}) \\ k_{3} &= k_{03}K_{eq3}f_{hi} \\ k_{-3} &= k_{03} \\ v_{3} &= k_3[QH_2]_{p} [FeS]_{ox} - k_{-3}[Q^-]_p [FeS]_{rd} \\ k_{4, ox} &= k_{04}K_{eq4, ox} \exp(-\alpha\delta_1\Delta\Psi_m F/ RT) \\ k_{4, rd} &= k_{04}K_{eq4, rd} \exp(-\alpha\delta_1\Delta\Psi_m F/ RT) \\ k_{-4, ox} &= k_{04} \exp(\alpha(1-\delta_1)\Delta\Psi_m F/ RT) \\ k_{-4, rd} &= k_{04} \exp(\alpha(1-\delta_1)\Delta\Psi_m F/ RT) \\ v_{4, ox} &= k_{4, ox}[Q^-]_p [cytb_1] - k_{-4, ox}[Q]_{p} [cytb_2] \\ v_{4, rd} &= k_{4, rd}[Q^-]_p [cytb_3] - k_{-4, rd}[Q]_{p} [cytb_4] \\ v_{5} &= k_d([Q]_{p} - [Q]_{n}) \\ k_{6} &= K_{06}K_{eq6} \exp( -\beta\delta_2\Delta\Psi_m / V_T) \\ k_{-6} &= k_{06} \exp( \beta(1-\delta_2)\Delta\Psi_m / V_T) \\ v_{6} &= k_{6} [cytb_2] - k_{-6} [cytb_3] \\ k_{7, ox} &= k_{07, ox}K_{eq7, ox}\exp(-\gamma\delta_3\Delta\Psi_m F/ RT) \\ k_{7, rd} &= k_{07, rd}K_{eq7, rd}\exp(-\gamma\delta_3\Delta\Psi_m F/ RT) \\ k_{-7, ox} &= k_{07, ox} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \\ k_{-7, rd} &= k_{07, rd} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \\ v_{7, ox} &= (k_{7, ox}[Q]_{n}[cytb_3] - k_{-7, ox}[Q^-]_n [cytb_1])C3_{inhib} \\ v_{7, rd} &= (k_{7, rd}[Q]_{n}[cytb_4] - k_{-7, rd}[Q^-]_n [cytb_2])C3_{inhib} \\ \end{align} \end{split}\]
\[\begin{split} \begin{align} f_{hm} & = [H^+]_{m} / 10^{-7}M \\ k_{8, ox} &= k_{08, ox}K_{eq8, ox}\exp(-\gamma\delta_3\Delta\Psi_m F/ T)(f_{hm})^2 \\ k_{8, rd} &= k_{08,rd}K_{eq8, rd}\exp(-\gamma\delta_3\Delta\Psi_m F/ T)(f_{hm})^2 \\ k_{-8, ox} &= k_{08, ox} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \\ k_{-8, rd} &= k_{08, rd} \exp(\gamma(1-\delta_3)\Delta\Psi_m F/ RT) \\ v_{8, ox} &= (k_{8, ox}[Q^-]_{n}[cytb_3] - k_{-8, ox}[QH_2]_{n}[cytb_1])C3_{inhib} \\ v_{8, rd} &= (k_{8, rd}[Q^-]_{n}[cytb_4] - k_{-8, rd}[QH_2]_{n}[cytb_2])C3_{inhib} \\ k_9 &= k_{09}K_{eq9} \\ k_{-9} &= k_{09} \\ v_{9} &= k_{9}[FeS]_{rd}[cytc1]_{ox} - k_{-9}[FeS]_{ox}[cytc1]_{rd}\\ k_{10} &= k_{010}K_{eq10} \\ k_{-10} &= k_{010} \\ v_{10} &= k_{10}[Q^-]_p[O_2] - k_{-10}[Q]_p[O_2^-] \\ v_{10b} &= v_{10} \\ v_{33} &= k_{33}(K_{eq}[cytc1]_{rd}[cytc]_{ox} - [cytc]_{rd}[cytc1]_{ox}) \\ \rho_{C3}^{\prime} &= \rho_{C3} \cdot mt_{prot} \\ \rho_{C4}^{\prime} &= \rho_{C4} \cdot mt_{prot} \\ FeS_{rd} &= \rho_{C3}^{\prime} - FeS_{ox} \\ cytc1_{rd} &= \rho_{C3}^{\prime} - cytc1_{ox} \\ cytc_{rd} &= \rho_{C4}^{\prime} - cytc_{ox} \\ [cytb_4] &= \rho_{C3}^{\prime} - [cytb_1] - [cytb_2] - [cytb_3] \\ [QH_2]_p &= \Sigma Q - [Q]_n - [Q]_p - [QH_2]_n - [Q^-]_p - [Q^-]_n \\ J_{hRes}^{C3} &= 2v_{3} \\ J_{ROS, m}^{C3} &= v_{10} \\ J_{ROS, i}^{C3} &= v_{10b} \\ \end{align} \end{split}\]
\[\begin{split} \begin{align} \frac{d[Q]_n}{dt} &= v_5 - v_{7,ox}- v_{7,rd} - v_1  \\ \frac{d[Q^-]_n}{dt} &= v_{7,ox} + v_{7,rd} - v_{8,ox}- v_{8,rd}  \\ \frac{d[QH_2]_n}{dt} &= v_{8,ox} + v_{8,rd} + v_1 - v_2   \\ \frac{d[QH_2]_p}{dt} &= v_2 -v_3 \\ \frac{d[Q^-]_p}{dt} &= v_3 - v_{10} - v_{10b} - v_{4,ox} - v_{4,rd}   \\ \frac{d[Q]_p}{dt} &= v_{10} + v_{10b} + v_{4,ox} + v_{4,rd} - v_5   \\ \frac{d[cytb_1]}{dt} &= v_{7,ox} + v_{8,ox} - v_{4,ox}    \\ \frac{d[cytb_2]}{dt} &= v_{4,ox} + v_{7,rd} - v_{8,rd} - v_6   \\ \frac{d[cytb_3]}{dt} &= v_6 - v_{4,rd} + v_{7,ox} - v_{8,ox}    \\ \frac{d[cytb_4]}{dt} &= v_{4,rd} - v_{7,rd} - v_{8,rd}   \\ \frac{d[FeS]_{ox}}{dt} &= v_9 - v_3      \\ \frac{d[cytc1]_{ox}}{dt} &= v_{33} - v_9   \\ \frac{d[cytc]_{ox}}{dt} &= V_e - v_{33}   \\ \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(k_{03}\)

1,666.63

Hz/mM

Reverse rate constant for reaction 3

\(K_{eq3}\)

0.6877

-

Equilibrium constant for reaction 3

\(k_{04}\)

60.67

Hz/mM

Reverse rate constant for reaction 4

\(K_{eq4,ox}\)

129.9853

-

Equilibrium constant for reaction 4
(bH oxidized)

\(K_{eq4,rd}\)

13.7484

-

Equilibrium constant for reaction 4
(bH reduced)

\(\delta_1\)

0.5

-

\(\alpha\)

0.2497

-

\(k_d\)

22000

Hz

Diffusion rate of ubiquinone across the membrane

\(k_{06}\)

166.67

Hz/mM

Reverse rate constant for reaction 6

\(K_{eq6}\)

9.4596

-

Equilibrium constant for reaction 6

\(\delta_2\)

0.5

-

\(\beta\)

0.5006

-

\(k_{07,ox}\)

13.33

Hz/mM

Reverse rate constant for reaction 7
(bL oxidized)

\(K_{eq7,ox}\)

3.0748

-

Equilibrium constant for reaction 7
(bL oxidized)

\(k_{07,rd}\)

1.667

Hz/mM

Reverse rate constant for reaction 7
(bL reduced)

\(K_{eq7,rd}\)

29.0714

-

Equilibrium constant for reaction 7
(bL reduced)

\(\delta_3\)

0.5

-

\(\gamma\)

0.2497

-

\(\alpha + \beta + \gamma = 1\)

\(k_{08,ox}\)

83.33

Hz/mM

Reverse rate constant for reaction 8
(bL oxidized)

\(K_{eq8,ox}\)

129.9853

-

Equilibrium constant for reaction 8
(bL oxidized)

\(k_{08,rd}\)

8.333

Hz/mM

Reverse rate constant for reaction 8
(bL reduced)

\(K_{eq8,rd}\)

9.4596

-

Equilibrium constant for reaction 8
(bL reduced)

\(k_{09}\)

833

Hz/mM

Reverse rate constant for reaction 9

\(K_{eq9}\)

0.2697

-

Equilibrium constant for reaction 9

\(k_{010}\)

0.8333

Hz/mM

Reverse rate constant for reaction 10

\(K_{eq10}\)

1.4541

-

Equilibrium constant for reaction 10

\(k_{33}\)

2469.13

Hz/mM

Reverse rate constant for reaction 33

\(K_{eq33}\)

2.1145

-

Equilibrium constant for reaction 33

\(\rho_{C3}\)

0.325

mM

Complex III content

Complex IV#

\[\begin{split} \begin{align} f_{H_{m}} &= \exp(-\delta_5\Delta\Psi_m F/ RT) ([H^+]_m /10^{-7}M) \\ f_{H_{i}} &= \exp((1-\delta_5)\Delta\Psi_m F/ RT) ([H^+]_i /10^{-7}M) \\ f_{C_{rd}} &= [cytc]_{rd} \\ f_{C_{ox}} &= \text{exp}((1-\delta_5)\Delta\Psi_m F/ RT) [cytc]_{ox} \\ a_{12} &= k_{34} f_{C_{rd}}^3 f_{H_{m}}^4 \\ a_{14} &= k_{-37} f_{H_{i}} \\ a_{21} &= k_{-34} f_{C_{ox}}^3 f_{H_{i}} \\ a_{23} &= k_{35} [O_2] C4_{inhib} \\ a_{34} &= k_{36} f_{C_{rd}} f_{H_{m}}^3 \\ a_{41} &= k_{37} f_{H_{m}} \\ a_{43} &= k_{-36} f_{C_{ox}} f_{H_{i}}^2 \\ e_1 &= a_{21}a_{41}a_{34} + a_{41}a_{34}a_{23} \\ e_2 &= a_{12}a_{41}a_{34} \\ e_3 &= a_{23}a_{12}a_{41} + a_{43}a_{14}a_{21} + a_{23}a_{43}a_{12} + a_{23}a_{43}a_{14} \\ e_4 &= a_{14}a_{34}a_{21} + a_{34}a_{23}a_{12} + a_{34}a_{23}a_{14} \\ \Delta &= e_1 + e_2 + e_3+ e_4 \\ Y &= e_1 / \Delta \\ Yr &= e_2 / \Delta \\ YO &= e_3 / \Delta \\ YOH &= e_4 / \Delta \\ v_{34} &= \rho_{C4}^\prime (Y \cdot a_{12} - Yr \cdot a_{21}) \\ v_{35} &= \rho_{C4}^\prime Yr \cdot a_{23} \\ v_{36} &= \rho_{C4}^\prime (YO \cdot a_{34} - YOH \cdot a_{43}) \\ v_{37} &= \rho_{C4}^\prime (YOH \cdot a_{41} - Y \cdot a_{14}) \\ V_e &= 3v_{34} + v_{35} \\ J_{hRes}^{C4} &= v_{34} + 2v_{36} + v_{37} \\ J_{O_2} &= v_{35} \\ J_{hRes} &= J_{hRes}^{C1} + J_{hRes}^{C3} + J_{hRes}^{C4} \\ \rho_{C4}^\prime &= \rho_{C4} \cdot mt_{prot} \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(\Sigma cytc\)

0.325

mM

Cytochrome c pool

\(\rho_{C4}\)

0.325

mM

Complex IV content

\(k_{34}\)

2.9445E10

Hz/mM^3

Rate constant @ pH = 7

\(k_{-34}\)

290.03

Hz/mM^3

Rate constant @ pH = 7

\(k_{35}\)

45000

Hz/mM

\(k_{36}\)

4.826E11

Hz/mM

Rate constant @ pH = 7

\(k_{-36}\)

4.826

Hz/mM

Rate constant @ pH = 7

\(k_{37}\)

1.7245E8

Hz

Rate constant @ pH = 7

\(k_{-37}\)

17.542

Hz

Rate constant @ pH = 7

Complex V (ATP synthase)#

\[\begin{split} \begin{align} J_{F1Fo} &= -\rho^{F1} ((100 p_a + p_{c1} v_B) v_a - (p_a + p_{c2} v_a) v_h) / \Delta \\ J_H^{F1Fo} &= -3\rho^{F1} (100p_a(1 + v_a) - (p_a + p_b)v_h) / \Delta \\ \Delta &= (1 + p_1 v_a)v_B + (p_2 + p_3 v_a)v_h \\ v_B &= \text{exp}(3\Delta\Psi_B / V_T) \\ v_h &= \text{exp}(3\Delta p / V_T) \\ v_a &= \frac{K_{eq}^{'} \cdot \Sigma[ATP]_m}{ \Sigma[Pi]_m \cdot \Sigma[ADP]_m } \\ \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(\rho_{F1}\)

5

mM

Concentration of F1-Fo ATPase

\(K_{eq}^{'}\)

6.47E5

M

Apparent equilibrium constant for ATP hydrolysis[2]

\(\Delta\Psi_B\)

50

mV

Phase boundary potential

\(p_{a}\)

1.656E-5

Hz

Sum of products of rate constants

\(p_{b}\)

3.373E-7

Hz

Sum of products of rate constants

\(p_{c1}\)

9.651E-14

Hz

Sum of products of rate constants

\(p_{c2}\)

4.585E-14

Hz

Sum of products of rate constants

\(p_{1}\)

1.346E-4

-

Sum of products of rate constants

\(p_{2}\)

7.739E-7

-

Sum of products of rate constants

\(p_{3}\)

6.65E-15

-

Sum of products of rate constants

Reactive oxygen species (ROS) scavenging and transport#

Catalase (CAT)#

Includes inhibition by high levels of hydrogen peroxide

\[\begin{split} \begin{align} V_{CAT} = 2k_1E_T[H_2O_2]_i \cdot e^{-fr[H_2O_2]_i} \\ \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(k_1\)

17

1/(mM*ms)

Rate constant of catalase

\(E_T\)

0.01

mM

Extra-matrix concentration of catalase

\(fr\)

0.05

1/mM

Hydrogen peroxide inhibition factor

Superoxide dismutase (SOD)#

Based on (McADAM, 1976) model.

\[\begin{split} \begin{align} J_{SOD} &= \frac{2 k_5 E_T f_{sox} (k_1 + k_3^\prime)}{ k_5 (2 k_1 + k_3^\prime) + k_3^\prime f_{sox}} \\ k_3^\prime &= k_3 (1 + \frac{[H_2O_2]}{K_{H_2O_2}}) \\ f_{sox} &= k_1^{SOD} [O_2^-] \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(k_1\)

1200

1/(mM*ms)

Rate constant for EA -> EB

\(k_3\)

24

1/(mM*ms)

Rate constant for EB -> EC

\(k_5\)

0.24

1/s

Rate constant for EC -> EA

\(K_{i}\)

500

μM

Inhibition constant for H2O2

\(E_{T}\)

3

μM

Concentration of Cu,ZnSOD (cytosolic)

Glutathione peroxidase (GPX)#

Dalziel type Ping-pong mechanism.

\[\begin{split} \begin{align} J_{GPX} &= \frac{E_T}{A + B} \\ A &= \frac{\Phi_1}{[H_2O_2] } \\ B & = \frac{\Phi_2}{[GSH] } \\ \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(E_T\)

10

μM

GPX content

\(\Phi_1\)

5

mM/s

Dalziel coefficient

\(\Phi_2\)

75

mM/s

Dalziel coefficient

Glutathione reductase (GR)#

Michaelis-Menten kinetics.

\[\begin{split} \begin{align} J_{GR} &= k_1^{GR} E_T \frac{[GSSG]}{[GSSG] + K_{GSSG}} \frac{[NADPH]}{[NADPH] + K_{NADPH}} \\ \Sigma [GSH] &= [GSH] + 2 [GSSG] \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(E_T\)

10

μM

GR content (cytosolic)

\(k_1^{GR}\)

5

Hz

Catalytic constant of GR

\(K_{GSSG}\)

60

μM

Michaelis constant for GSSG

\(K_{NADPH}\)

15

μM

Michaelis constant for NADPH

\(\Sigma [GSH]\)

1

mM

Cytosolic GSH pool

Inner mitochondrial anion channel (IMAC)#

\[\begin{split} \begin{align} g_{IMAC} &= \left( a + b \frac{[O_2^-]_i}{[O_2^-]_i + K_{CC}} \right) \left( G_L + \frac{G_{max}}{1 + e^{κ(\Delta\Psi_m^b + \Delta\Psi_m)}} \right) \\ V_{IMAC} &= g_{IMAC}\Delta\Psi_m \\ V_{tr}^{ROS} &= j \cdot g_{IMAC} \left( \Delta\Psi_m + V_T ln \left( \frac{[O_2^-]_m}{[O_2^-]_i} \right) \right) \\ \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

a

0.001

-

Basal IMAC conductance

b

10000

-

Activation factor by superoxide

\(K_{CC}\)

10

μM

Activation constant by superoxide

\(G_L\)

0.035

μM * Hz / mV

Integral conductance for IMAC

\(G_{max}\)

3.9085

μM * Hz / mV

Leak conductance of IMAC

\(\kappa\)

0.07

1/mV

Steepness factor

\(\Delta\Psi_m^b\)

4

mV

Potential at half saturation

j

0.1

-

Fraction of IMAC conductance

ODEs for ROS transport and scavenging#

\[\begin{split} \begin{align} \frac{d [ O_{2}^{-}]_{m}}{dt} &= J_{ROS,m} - J^{Tr}_{ROS} \\ \frac{d [ O_{2}^{-}]_{i}}{dt} &= \frac{V_{mito}}{V_{cyto}} J^{Tr}_{ROS} -J_{SOD,i} \\ \frac{d[H_2O_2]_i}{dt} &= 0.5J_{SOD,i} -J_{GPX,i} - J_{CAT} \\ \frac{d[GSH]_i}{dt} &= J_{GR,i} - J_{GPX,i} \\ \end{align} \end{split}\]

Mitochondrial ion transport#

Adenine Nucleotide translocator (ANT)#

\[\begin{split} \begin{align} J_{ANT} &= V_{max}^{ANT}\frac{AB - \delta PQ}{(B + \delta^{h_{ANT}} P)(A + Q)} \\ A &= [ATP^{4-}]_m = 0.025 [ATP]_m \\ B &= [ADP^{3-}]_i = 0.45 [ADP]_i \\ P &= [ATP^{4-}]_i = 0.25 [ATP]_i \\ Q &= [ADP^{3-}]_m = 0.17 [ADP]_m \\ \delta &= \text{exp}(-\Delta\Psi_m F / RT) \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(V_{max}^{ANT}\)

5

mM/s

Maximal rate of ANT

\(h_{ANT}\)

0.5

-

Fraction of MMP

Mitochondrial calcium uniporter (MCU)#

\[\begin{split} \begin{align} J_{uni} &= V_{max}^{Uni} \frac{S (1+S)^3}{(1+S)^4 + L(1 + A)^n} \frac{\delta}{e^\delta-1} \\ S &= [Ca^{2+}]_i / K_{trans} \\ A &= [Ca^{2+}]_i / K_{act} \\ \delta &= -2 (\Delta\Psi_m - \Delta\Psi_0) F/RT \\ \end{align} \end{split}\]

Parameter

Value

Unit

Desc.

\(V_{max}^{Uni}\)

4.46

mM/s

Maximal rate

\(\Delta\Psi_0\)

91

mV

Offset potential

\(K_{act}\)

0.38

μM

Activation constant for calcium

\(K_{trans}\)

19

μM

Dissociation constant for calcium

n

-2.8

-

Activation cooperativity

L

110

-

Keq for conformational transitions

Mitochondrial sodium-calcium exchanger (NCLX)#

\[ \begin{align} J_{NCLX} = V_{max}^{NCLX} \exp(b\Delta\Psi_m F/RT) \frac{[Ca^{2+}]_m}{[Ca^{2+}]_i} \left( \frac{[Na^+]_i}{[Na^+]_i + K_{Na}^{NCLX}} \right)^n \frac{[Ca^{2+}]_m}{[Ca^{2+}]_m + K_{Ca}^{NCLX}} \end{align} \]

Parameter

Value

Unit

Desc.

\(V_{max}^{NCLX}\)

0.04665

mM/s

Maximal rate of NCLX

b

0.5

-

Fraction of MMP

\(K_{Na}^{NCLX}\)

9.4

mM

Dissociation constant for sodium

\(K_{Ca}^{NCLX}\)

0.375

μM

Dissociation constant for calcium

\(n\)

3

-

Cooperativity

Mitochondrial proton leak#

\[ J_{hleak} = g_H\Delta\Psi_m \]

Parameter

Value

Unit

Desc.

\(g_{H}\)

2

mM / (Volt * s)

Ionic conductance of the inner mitochondrial membrane

ODEs for mitochondrial ion transport#

\[\begin{split} \begin{align} \frac{d [Ca^{2+}]_m}{dt} &=\delta_{Ca}( J_{uni} - J_{NCLX}) \\ \frac{d [Na^+]_m}{dt} &= J_{NCLX} - J_{NaH} \\ C_{m}\frac{d \Delta \Psi_m}{dt} &= J_{Hres} - J_{Hu} - J_{ANT} - J_{Hleak} -J_{NCLX} - J_{uni} - J_{IMAC} \\ \end{align} \end{split}\]

General parameters#

Parameter

Value

Unit

Desc.

F

96485

C/mol

Faraday constant

T

310

K

Absolute temperature

R

8.314

J/molK

Universal gas constant

\(V_T\)

26.71

mV

Thermal voltage (=\({RT}/{F}\))

\(C_m\)

1.0

\(\text{μF/cm}^2\)

Plasma membrane capacitance

\(C_{mito}\)

1.812

mM/V

Mitochondrial inner membrane capacitance

\(\delta_{Ca}\)

0.0003

-

Mitochondrial free calcium fraction

\(\delta_H\)

1E-5

-

Mitochondrial proton buffering factor

\(V_{myo}\)

\(25.84\)

\(pL\)

Cytosolic volume

\(V_{mito}\)

\(15.89\)

\(pL\)

Mitochondrial volume

\(V_{NSR}\)

\(1.4\)

\(pL\)

Network SR volume

\(V_{JSR}\)

\(0.16\)

\(pL\)

Junctional SR volume

\(V_{SS}\)

\(0.000495\)

\(pL\)

Subspace volume

\(A_{cap}\)

\(1.534 \cdot 10^{-4} \)

\(cm^{2}\)

Capacitance area

\(C_{m}\)

\(1.0\)

\(\mu F \cdot cm^{-2}\)

Plasma membrane capacitance

\([K^+]_{o}\)

\(5.4\)

\(mM\)

Extracellualr potassium

\([Na^+]_{o}\)

\(140\)

\(mM\)

Extracellualr sodium

\([Ca^{2+}]_{o}\)

\(2\)

\(mM\)

Extracellualr calcium

\(C_{mito}\)

\(1.812 \cdot 10^{-3}\)

\(mM/mV\)

Inner membrane capacitance

\(g_{H}\)

\(1 \cdot 10^{-8}\)

\(mM/msmV\)

Inner membrane conductance

Fixed concentrations#

Parameter

Value

Unit

Desc.

\(pH_i\)

7

CytosoliWc pH

\(pH_m\)

7.3-7.8

Mitochondrial pH

\([O_2]\)

0.006

mM

Tissue oxygen concentration

\([Mg^{2+}]_i\)

1.0

mM

Cytosolic magnesium concentration

\([Mg^{2+}]_m\)

0.4

mM

Mitochondrial magnesium concentration

\(\Sigma[Pi]_m\)

8.6512

mM

Sum of mitochondrial inorganic phosphate

\(\Sigma{[N]}\)

1

mM

Sum of mitochondrial NAD and NADH

\(\Sigma[A]_m\)

1.5

mM

Sum of mitochondrial ATP and ADP

\(\Sigma{[NADP]_m}\)

0.1

mM

Sum of mitochondrial NADPH plus NADP

\([Ca^{2+}]_i\)

1E-4

mM

Cytosolic calcium concentration

Initial conditions#